Stability Problems in Plasma Physics, Stellar Dynamics and Classical Field Theory
等离子体物理、恒星动力学和经典场论中的稳定性问题
基本信息
- 批准号:9971306
- 负责人:
- 金额:$ 9.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research that is funded with this award will address problems inplasma physics, stellar dynamics, and superconductivity. The PI willconstruct steady state solutions of the partial differential equations thatmodel these phenomena and will study their dynamic stability. Specifically, the Vlasov model for collisionless plasmas, models for polytropic galaxies,and models for superconductivity and superfluidity that exhibit vortices willbe investigated. This award will fund research on mathematical models for phenomena inwhich huge numbers of individual particles interact. These phenomena can occur in plasmas, the physical state of the interior of fluorescent lights, manufacturing reactors for microchips, and of the interior of the sun. In this case, atomic particles interact by means of electromagnetic forces. Related phenomena also occur on cosmic scales, for instance in galaxies, where the interacting particles are entire stars and the interaction is by means of gravitation. The mathematical models for these very different situations have similarities. The research will study equilibrium configurations such as the steady state operation of a plasma-assisted manufacturing device or the steady rotation of a galaxy and seek to understand its stability or the ways in which stability is lost. Instability may mean loss of efficiency for a manufacturing process or the formation of spiral arms in a galaxy.
由该奖项资助的研究将解决等离子体物理学、恒星动力学和超导性方面的问题。PI将构建模拟这些现象的偏微分方程的稳态解,并研究它们的动态稳定性。具体来说,将研究无碰撞等离子体的弗拉索夫模型、多向星系模型、超导和超流动性模型。该奖项将资助对大量单个粒子相互作用现象的数学模型的研究。这些现象可以发生在等离子体,荧光灯内部的物理状态,制造微芯片的反应堆,以及太阳的内部。在这种情况下,原子粒子通过电磁力相互作用。相关的现象也发生在宇宙尺度上,例如在星系中,相互作用的粒子是整个恒星,相互作用是通过引力来实现的。这些不同情况的数学模型有相似之处。该研究将研究平衡结构,如等离子体辅助制造设备的稳态操作或星系的稳定旋转,并试图了解其稳定性或稳定性丧失的方式。不稳定性可能意味着制造过程或星系中螺旋臂形成的效率损失。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yan Guo其他文献
Enhanced Sieving of C2‐Hydrocarbon from Methane by Fluoro‐Functionalization of In‐MOF with Robust Stability
通过氟增强从甲烷中筛选 C2 — 碳氢化合物 — 具有鲁棒稳定性的 In — MOF 功能化
- DOI:
10.1002/asia.202101220 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yan Guo;Chen Liang;Chengcheng Zhang;Jesús Ferr;o‐Soria;Yu Gao;Jiahui Yang;Xiangyu Liu;Emilio Pardo - 通讯作者:
Emilio Pardo
In situ ligand-free growth of TiO2-escapsulated Au nanocomposites on photoanode for efficient dye sensitized solar cells
TiO2 封装的 Au 纳米复合材料在光电阳极上原位无配体生长,用于高效染料敏化太阳能电池
- DOI:
10.1016/j.cej.2020.125302 - 发表时间:
2020-09 - 期刊:
- 影响因子:15.1
- 作者:
Xiong He;Yan Guo;Xin Li - 通讯作者:
Xin Li
High mechanical strength aluminum foam epoxy resin composite material with superhydrophobic, anticorrosive and wear-resistant surface
表面超疏水、防腐、耐磨的高机械强度泡沫铝环氧树脂复合材料
- DOI:
10.1016/j.surfin.2022.101747 - 发表时间:
2022-01 - 期刊:
- 影响因子:6.2
- 作者:
Yuwei Wang;Baoli Ou;Ping Zhu;Bo Niu;Yan Guo;Qian Zhi - 通讯作者:
Qian Zhi
A Facile, Microwave‐Assisted, Palladium‐Catalyzed Arylation of Acetone.
丙酮的简便、微波辅助、钯催化芳基化。
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
H. Chobanian;Ping Liu;M. Chioda;Yan Guo;L. Lin - 通讯作者:
L. Lin
Sensing Matrix Optimization for Multi-target Localization Using Compressed Sensing in Wireless Sensor Network
无线传感器网络中使用压缩感知的多目标定位的传感矩阵优化
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:4.1
- 作者:
Xinhua Jiang;Ning Li;Yan Guo;Jie Liu;Cong Wang - 通讯作者:
Cong Wang
Yan Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yan Guo', 18)}}的其他基金
Partial Differential Equation Methods in Kinetic Theory and Their Applications
运动理论中的偏微分方程方法及其应用
- 批准号:
2106650 - 财政年份:2021
- 资助金额:
$ 9.4万 - 项目类别:
Continuing Grant
Partial Differential Equation Methods in Kinetic Theory and Their Applications
运动理论中的偏微分方程方法及其应用
- 批准号:
1810868 - 财政年份:2018
- 资助金额:
$ 9.4万 - 项目类别:
Standard Grant
Partial differential equation methods in kinetic theory and their applications
动力学理论中的偏微分方程方法及其应用
- 批准号:
1611695 - 财政年份:2016
- 资助金额:
$ 9.4万 - 项目类别:
Standard Grant
PDE Methods in Kinetic Theory and Their Applications
动力学理论中的偏微分方程方法及其应用
- 批准号:
1209437 - 财政年份:2012
- 资助金额:
$ 9.4万 - 项目类别:
Continuing Grant
PDE Methods in Kinetic Theory and Their Applications
动力学理论中的偏微分方程方法及其应用
- 批准号:
0905255 - 财政年份:2009
- 资助金额:
$ 9.4万 - 项目类别:
Standard Grant
PDE Methods for the Stability Study in Kinetic Theory and Their Applications
动力学理论稳定性研究的偏微分方程方法及其应用
- 批准号:
0603815 - 财政年份:2006
- 资助金额:
$ 9.4万 - 项目类别:
Continuing Grant
PDE Methods for the Stability Study in Kinetic Theory and Their Applications
动力学理论稳定性研究的偏微分方程方法及其应用
- 批准号:
0305161 - 财政年份:2003
- 资助金额:
$ 9.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Stability Problems in Plasmas
数学科学:等离子体的稳定性问题
- 批准号:
9623253 - 财政年份:1996
- 资助金额:
$ 9.4万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9508854 - 财政年份:1995
- 资助金额:
$ 9.4万 - 项目类别:
Fellowship Award
相似海外基金
LEAPS-MPS: Hybridizable discontinuous Galerkin methods for non-linear integro-differential boundary value problems in magnetic plasma confinement
LEAPS-MPS:磁等离子体约束中非线性积分微分边值问题的混合不连续伽辽金方法
- 批准号:
2137305 - 财政年份:2021
- 资助金额:
$ 9.4万 - 项目类别:
Standard Grant
EXAHD - An Exa-Scalable Two-Level Sparse Grid Approach for Higher-Dimensional Problems in Plasma Physics and Beyond
EXAHD - 用于等离子体物理及其他领域高维问题的 Exa 可扩展两级稀疏网格方法
- 批准号:
230862074 - 财政年份:2012
- 资助金额:
$ 9.4万 - 项目类别:
Priority Programmes
Asymptotic problems and Well-posedness results in Fluid Mechanics and Plasma Physics
流体力学和等离子体物理学中的渐近问题和适定性结果
- 批准号:
0703145 - 财政年份:2007
- 资助金额:
$ 9.4万 - 项目类别:
Continuing Grant
Projection Methods for Multiscale Problems in Plasma Physics and Applications
等离子体物理中多尺度问题的投影方法及其应用
- 批准号:
0317511 - 财政年份:2003
- 资助金额:
$ 9.4万 - 项目类别:
Standard Grant
Studies of industrial plasma processing problems in microelectronic manufacturing by novel laser infrared radiometric depth profilometric techniques
通过新型激光红外辐射深度轮廓测量技术研究微电子制造中的工业等离子体处理问题
- 批准号:
5622-1999 - 财政年份:2002
- 资助金额:
$ 9.4万 - 项目类别:
Discovery Grants Program - Individual
Studies of industrial plasma processing problems in microelectronic manufacturing by novel laser infrared radiometric depth profilometric techniques
通过新型激光红外辐射深度轮廓测量技术研究微电子制造中的工业等离子体处理问题
- 批准号:
5622-1999 - 财政年份:2001
- 资助金额:
$ 9.4万 - 项目类别:
Discovery Grants Program - Individual
Studies of industrial plasma processing problems in microelectronic manufacturing by novel laser infrared radiometric depth profilometric techniques
通过新型激光红外辐射深度轮廓测量技术研究微电子制造中的工业等离子体处理问题
- 批准号:
5622-1999 - 财政年份:2000
- 资助金额:
$ 9.4万 - 项目类别:
Discovery Grants Program - Individual
Studies of industrial plasma processing problems in microelectronic manufacturing by novel laser infrared radiometric depth profilometric techniques
通过新型激光红外辐射深度轮廓测量技术研究微电子制造中的工业等离子体处理问题
- 批准号:
5622-1999 - 财政年份:1999
- 资助金额:
$ 9.4万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Problems: Mathematical Modeling in Plasma Physics
数学问题:等离子体物理中的数学建模
- 批准号:
9404433 - 财政年份:1994
- 资助金额:
$ 9.4万 - 项目类别:
Standard Grant
Conference on Outstanding Problems in Solar System Plasma Physics: New Theory and Instrumentation
太阳系等离子体物理突出问题会议:新理论和仪器
- 批准号:
8718008 - 财政年份:1987
- 资助金额:
$ 9.4万 - 项目类别:
Standard Grant