Partial Differential Equation Methods in Kinetic Theory and Their Applications

运动理论中的偏微分方程方法及其应用

基本信息

  • 批准号:
    2106650
  • 负责人:
  • 金额:
    $ 36.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The project considers boundary effects for several physical models widely used to describe a hot plasma. The questions studied are motivated by, and have implications for, a broad range of applications. As in the case of a nuclear fusion device, where it is important to control and understand the plasma-wall interaction, or in Einstein's theory for general relativity, where a fundamental open question, known as cosmic censorship conjecture, is whether a gravitational collapse of a star cannot (i.e., black holes) or can (i.e., naked singularity) be observed generically. This work will construct examples of exact gravitational collapse in Einstein's theory that can be observed, and will investigate the dynamics of contact lines as well as the effect of a Coriolis force in oceans. This project provides training opportunities for graduate students.Kinetic theory provides important models for describing a confined plasma in a device. Because of the severe mathematical difficulties caused by the presence of a grazing set at the boundary, questions of well-posedness for kinetic plasma models in the presence of magnetic effect remain open. Motivated by applications such as contact-line dynamics and the effects of a constant rotation or a constant magnetic field on a fluid, the investigator will pursue several lines of research. The problems investigated are the asymptotical stability of BGK waves; the rigorous analysis of numerical evidence that indicates the existence of a relativistic Larson-Penston self-similar gravitational collapse, leading to formation of a stable naked singularity and the violation of the cosmic censorship hypothesis; and the well-posedness of a hydrodynamic model describing contact line dynamics. The project will also develop a new mechanism to construct long time (global) smooth inviscid fluid flows based on the dispersive effect induced by a constant rotation or a magnetic field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目考虑了广泛用于描述热等离子体的几种物理模型的边界效应。研究的问题受到广泛应用的启发,并对其产生影响。就像在核聚变装置的情况下,控制和理解等离子体壁相互作用很重要,或者在爱因斯坦的广义相对论中,一个基本的开放问题,被称为宇宙审查猜想,是恒星的引力塌缩是否不能(即黑洞)或可以(即裸奇点)被普遍观察到。这项工作将构建爱因斯坦理论中可观测到的精确引力塌缩的例子,并将研究接触线的动力学以及科里奥利力在海洋中的影响。该项目为研究生提供了培训机会。动力学理论为描述设备中的受限等离子体提供了重要模型。由于边界处存在放牧区会造成严重的数学困难,因此在存在磁效应的情况下动态等离子体模型的适定性问题仍然悬而未决。在接触线动力学以及恒定旋转或恒定磁场对流体的影响等应用的推动下,研究人员将进行多项研究。研究的问题是BGK波的渐近稳定性;对数值证据的严格分析表明存在相对论的拉尔森-彭斯顿自相似引力塌缩,导致稳定的裸奇点的形成并违反了宇宙审查假说;以及描述接触线动力学的流体动力学模型的适定性。该项目还将开发一种新机制,基于恒定旋转或磁场引起的色散效应来构造长期(全局)平滑的无粘性流体流动。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global axisymmetric Euler flows with rotation
  • DOI:
    10.1007/s00222-022-01145-6
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Yan Guo;B. Pausader;Klaus Widmayer
  • 通讯作者:
    Yan Guo;B. Pausader;Klaus Widmayer
Gravitational Collapse for Polytropic Gaseous Stars: Self-Similar Solutions
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yan Guo其他文献

Enhanced Sieving of C2‐Hydrocarbon from Methane by Fluoro‐Functionalization of In‐MOF with Robust Stability
通过氟增强从甲烷中筛选 C2 — 碳氢化合物 — 具有鲁棒稳定性的 In — MOF 功能化
  • DOI:
    10.1002/asia.202101220
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yan Guo;Chen Liang;Chengcheng Zhang;Jesús Ferr;o‐Soria;Yu Gao;Jiahui Yang;Xiangyu Liu;Emilio Pardo
  • 通讯作者:
    Emilio Pardo
In situ ligand-free growth of TiO2-escapsulated Au nanocomposites on photoanode for efficient dye sensitized solar cells
TiO2 封装的 Au 纳米复合材料在光电阳极上原位无配体生长,用于高效染料敏化太阳能电池
  • DOI:
    10.1016/j.cej.2020.125302
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Xiong He;Yan Guo;Xin Li
  • 通讯作者:
    Xin Li
High mechanical strength aluminum foam epoxy resin composite material with superhydrophobic, anticorrosive and wear-resistant surface
表面超疏水、防腐、耐磨的高机械强度泡沫铝环氧树脂复合材料
  • DOI:
    10.1016/j.surfin.2022.101747
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Yuwei Wang;Baoli Ou;Ping Zhu;Bo Niu;Yan Guo;Qian Zhi
  • 通讯作者:
    Qian Zhi
A Facile, Microwave‐Assisted, Palladium‐Catalyzed Arylation of Acetone.
丙酮的简便、微波辅助、钯催化芳基化。
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Chobanian;Ping Liu;M. Chioda;Yan Guo;L. Lin
  • 通讯作者:
    L. Lin
Sensing Matrix Optimization for Multi-target Localization Using Compressed Sensing in Wireless Sensor Network
无线传感器网络中使用压缩感知的多目标定位的传感矩阵优化
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Xinhua Jiang;Ning Li;Yan Guo;Jie Liu;Cong Wang
  • 通讯作者:
    Cong Wang

Yan Guo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yan Guo', 18)}}的其他基金

Partial Differential Equation Methods in Kinetic Theory and Their Applications
运动理论中的偏微分方程方法及其应用
  • 批准号:
    1810868
  • 财政年份:
    2018
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Standard Grant
Partial differential equation methods in kinetic theory and their applications
动力学理论中的偏微分方程方法及其应用
  • 批准号:
    1611695
  • 财政年份:
    2016
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Standard Grant
PDE Methods in Kinetic Theory and Their Applications
动力学理论中的偏微分方程方法及其应用
  • 批准号:
    1209437
  • 财政年份:
    2012
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Continuing Grant
PDE Methods in Kinetic Theory and Their Applications
动力学理论中的偏微分方程方法及其应用
  • 批准号:
    0905255
  • 财政年份:
    2009
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Standard Grant
Conference on Nonlinear Waves
非线性波会议
  • 批准号:
    0709977
  • 财政年份:
    2007
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Standard Grant
PDE Methods for the Stability Study in Kinetic Theory and Their Applications
动力学理论稳定性研究的偏微分方程方法及其应用
  • 批准号:
    0603815
  • 财政年份:
    2006
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Continuing Grant
PDE Methods for the Stability Study in Kinetic Theory and Their Applications
动力学理论稳定性研究的偏微分方程方法及其应用
  • 批准号:
    0305161
  • 财政年份:
    2003
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Continuing Grant
Stability Problems in Plasma Physics, Stellar Dynamics and Classical Field Theory
等离子体物理、恒星动力学和经典场论中的稳定性问题
  • 批准号:
    9971306
  • 财政年份:
    1999
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Stability Problems in Plasmas
数学科学:等离子体的稳定性问题
  • 批准号:
    9623253
  • 财政年份:
    1996
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9508854
  • 财政年份:
    1995
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Fellowship Award

相似海外基金

Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
  • 批准号:
    FT230100588
  • 财政年份:
    2024
  • 资助金额:
    $ 36.77万
  • 项目类别:
    ARC Future Fellowships
Learning Partial Differential Equation (PDE) and Beyond
学习偏微分方程 (PDE) 及其他内容
  • 批准号:
    2309551
  • 财政年份:
    2023
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Continuing Grant
Interplay Between Data and Partial Differential Equation Models Through the Lens of Kinetic Equations
通过动力学方程的视角观察数据和偏微分方程模型之间的相互作用
  • 批准号:
    2308440
  • 财政年份:
    2023
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Standard Grant
CAREER: Exploiting Low-Dimensional Structures in Data Science: Manifold Learning, Partial Differential Equation Identification, and Neural Networks
职业:在数据科学中利用低维结构:流形学习、偏微分方程识别和神经网络
  • 批准号:
    2145167
  • 财政年份:
    2022
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Continuing Grant
CAREER: Partial Differential Equation and Randomness
职业:偏微分方程和随机性
  • 批准号:
    2042384
  • 财政年份:
    2021
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Continuing Grant
General-Domain, Scalable, Accelerated Spectral Partial Differential Equation Solvers and Applications in Simulation and Design
通用域、可扩展、加速谱偏微分方程求解器及其在仿真和设计中的应用
  • 批准号:
    2109831
  • 财政年份:
    2021
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Continuing Grant
CAREER: Partial Differential Equation and Randomness
职业:偏微分方程和随机性
  • 批准号:
    2203014
  • 财政年份:
    2021
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Continuing Grant
Global analysis for solution of dispersive partial differential equation with mass subcritical nonlinearity
具有质量次临界非线性的色散偏微分方程解的全局分析
  • 批准号:
    21H00993
  • 财政年份:
    2021
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Algorithms and Numerical Methods for Optimization with Partial Differential Equation Constraints
偏微分方程约束优化的算法和数值方法
  • 批准号:
    2110263
  • 财政年份:
    2021
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Standard Grant
Study for nonlinear partial differential equation with Sobolev critical/supercritical nonlinearity
具有Sobolev临界/超临界非线性的非线性偏微分方程研究
  • 批准号:
    20K03706
  • 财政年份:
    2020
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了