Contact Geometry, Complex Analysis and Imaging
接触几何、复杂分析和成像
基本信息
- 批准号:0603973
- 负责人:
- 金额:$ 53.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A major current in analysis and topology for the last decade has been the generalization of constructions and results in complex algebraic geometry to the almost complex, symplectic category. In recent work, Dr. Epstein has shown that the dbar-Neumann boundary condition has a symplectic analogue for Spin-C manifolds with contact boundary. This work is based on the notion of tame Fredholm pairs of projectors. Dr. Epstein will further explore this category and these boundary value problems, to obtain explicit formulae for the index of the Spin-C Dirac operator and gluing formulae under various convexity conditions. He will also use this framework to investigate the unmodified dbar-Neumann problem on a strictly pseudoconvex symplectic manifold, to see if there is a reasonable analogue of the Bergman projection, and if its range defines a useful analogue of holomorphic functions in the non-compact symplectic context.In many mathematical and physical problems a question of principal interest is: how many solutions does a partial differential equation have? For certain classes of equations, a partial answer to this question, called the "index" of the equation, can be provided that does not depend on the details of equation. It is computed from the geometry of the space on which the solutions are defined. Dr. Epstein's work is broadly directly toward clarifying the relationship between this counting procedure and which aspects of the geometry of the underlying space are important determinants of the final result. One such approach to this problem involves cutting the space into parts and describing how the indices of the parts can be combined to compute the index of the whole.
在过去的十年里,分析和拓扑学的一个主要趋势是将复杂代数几何的构造和结果推广到几乎复杂的辛范畴。在最近的工作中,Epstein博士已经证明了dbar-Neumann边界条件对于具有接触边界的自旋- c流形具有辛模拟。这项工作是基于驯服弗雷德霍姆对投影仪的概念。Dr. Epstein将进一步探索这一类和这些边值问题,得到Spin-C Dirac算子指标的显式公式和各种凸性条件下的胶合公式。他还将使用这个框架来研究严格伪凸辛流形上的未修改dbar-Neumann问题,看看是否存在Bergman投影的合理模拟,以及它的范围是否定义了非紧辛环境下全纯函数的有用模拟。在许多数学和物理问题中,一个主要的问题是:一个偏微分方程有多少个解?对于某些类型的方程,可以给出这个问题的部分答案,称为方程的“指标”,它不依赖于方程的细节。它是从定义解的空间的几何构造中计算出来的。爱泼斯坦博士的工作基本上是直接为了澄清这种计数过程与底层空间几何的哪些方面是最终结果的重要决定因素之间的关系。解决这个问题的一种方法是将空间分割成各个部分,并描述如何将各个部分的指数组合起来计算整体的指数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Epstein其他文献
Loss of BCL7A permits IRF4 transcriptional activity and cellular growth in multiple myeloma
BCL7A 的缺失允许多发性骨髓瘤中的 IRF4 转录活性和细胞生长
- DOI:
10.1182/blood.2024026588 - 发表时间:
2025-07-03 - 期刊:
- 影响因子:23.100
- 作者:
Chandraditya Chakraborty;Srikanth Talluri;Moritz Binder;Eugenio Morelli;Jessica Encinas Mayoral;Sanika Derebail;Anil Aktas Samur;Charles Epstein;Kenneth C. Anderson;Masood Shammas;Mehmet K. Samur;Mariateresa Fulciniti;Nikhil C. Munshi - 通讯作者:
Nikhil C. Munshi
OAB-013: Universal loss of BCL7A allows release of its binding partner IRF4 inducing its transcriptional activity promoting MM cell growth
- DOI:
10.1016/s2152-2650(22)00286-5 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:
- 作者:
Chandraditya Chakraborty;Srikanth Talluri;Eugenio Morelli;Sanika Derebail;Yan Xu;Charles Epstein;Thomas Smits;Moritz Binder;Kenneth Anderson;Masood Shammas;Mehmet Samur;Mariateresa Fulciniti;Nikhil Munshi - 通讯作者:
Nikhil Munshi
Involvement of Oxygen‐based Radicals in Methamphetamine‐induced Neurotoxicity: Evidence from the Use of CuZnSOD Transgenic Mice a
氧自由基参与甲基苯丙胺诱导的神经毒性:使用 CuZnSOD 转基因小鼠的证据
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:5.2
- 作者:
J. Cadet;Syed F. Ali;Charles Epstein - 通讯作者:
Charles Epstein
Effects of fetal antiepileptic drug exposure
胎儿抗癫痫药物暴露的影响
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:9.9
- 作者:
K. Meador;G. Baker;N. Browning;M. Cohen;R. Bromley;J. Clayton;L. Kalayjian;A. Kanner;J. Liporace;P. Pennell;M. Privitera;D. Loring;D. Labiner;J. Moon;Scott Sherman;Deborah T. Combs Cantrell;Cheryl Silver;M. Goyal;Mike R. Schoenberg;A. Pack;C. Palmese;J. Echo;K. Meador;D. Loring;P. Pennell;D. Drane;E. Moore;Megan Denham;Charles Epstein;Jennifer Gess;S. Helmers;T. Henry;Gholam K. Motamedi;Erin Flax;E. Bromfield;K. Boyer;B. Dworetzky;A. Cole;Lucila Halperin;Sara Shavel;G. Barkley;B. Moir;C. Harden;Tara Tamny;Gregory P. Lee;Mor Cohen;P. Penovich;D. Minter;Layne Moore;K. Murdock;J. Liporace;Kathryn L. Wilcox;A. Kanner;M. Nelson;W. Rosenfeld;Michelle Meyer;J. Clayton;G. Mawer;U. Kini;R. Martin;M. Privitera;Jennifer Bellman;D. Ficker;L. Baade;K. Liow;G. Baker;A. Booth;R. Bromley;M. Casswell;C. Barrie;E. Ramsay;Patricia L. Arena;L. Kalayjian;C. Heck;Sonia Padilla;John Miller;Gail Rosenbaum;A. Wilensky;T. Constantino;Julien T Smith;N. Adab;Gisela Veling;Maria Sam;Cormac A. O'Donovan;C. Naylor;Shelli Nobles;Cesar Santos;G. Holmes;M. Druzin;M. Morrell;Lorene M. Nelson;R. Finnell;M. Yerby;K. Adeli;Peter Wells;N. Browning;T. Blalock;Todd W. Crawford;L. Hendrickson;B. Jolles;M. Kunchai;H. Loblein;Yinka Ogunsola;Steve Russell;J. Winestone;Mark Wolff;P. Zaia;T. Zajdowicz - 通讯作者:
T. Zajdowicz
Impairments of Brain and Behavior
大脑和行为损伤
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
M. Oscar;Barbara Shagrin;Denise L. Evert;Charles Epstein - 通讯作者:
Charles Epstein
Charles Epstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Epstein', 18)}}的其他基金
Operator Algebras in the Twenty-First Century
二十一世纪的算子代数
- 批准号:
1915752 - 财政年份:2019
- 资助金额:
$ 53.31万 - 项目类别:
Standard Grant
Degenerate Diffusions on Manifolds with Corners
带角流形上的简并扩散
- 批准号:
1507396 - 财政年份:2015
- 资助金额:
$ 53.31万 - 项目类别:
Standard Grant
Degenerate Diffusions on Manifolds with Corners
带角流形上的简并扩散
- 批准号:
1205851 - 财政年份:2012
- 资助金额:
$ 53.31万 - 项目类别:
Continuing Grant
Complex Analysis in Geometry, Inverse Scattering and Mathematical Physics
几何、逆散射和数学物理中的复分析
- 批准号:
0653803 - 财政年份:2007
- 资助金额:
$ 53.31万 - 项目类别:
Standard Grant
Contact Geometry, Complex Analysis and Imaging
接触几何、复杂分析和成像
- 批准号:
0203705 - 财政年份:2002
- 资助金额:
$ 53.31万 - 项目类别:
Continuing grant
Inhomogeneous Field Magnetic Resonance Imaging
非均匀场磁共振成像
- 批准号:
0207123 - 财政年份:2002
- 资助金额:
$ 53.31万 - 项目类别:
Standard Grant
Indices and Relative Indices in Contact and CR-Geometry
接触和 CR 几何中的索引和相对索引
- 批准号:
9970487 - 财政年份:1999
- 资助金额:
$ 53.31万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometry and Analysis of 3-Dimensional CR-Structures
数学科学:3 维 CR 结构的几何和分析
- 批准号:
9623040 - 财政年份:1996
- 资助金额:
$ 53.31万 - 项目类别:
Continuing grant
Mathematical Sciences: Analytic and Geometric Problems in Several Complex Variables
数学科学:多个复变量的解析和几何问题
- 批准号:
9301088 - 财政年份:1993
- 资助金额:
$ 53.31万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Invariants, Pseudodifferential Operators and Several Complex Variables
数学科学:几何不变量、伪微分算子和多个复变量
- 批准号:
9001957 - 财政年份:1990
- 资助金额:
$ 53.31万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Asymptotics in Complex Geometry: A Conference in Memory of Steve Zelditch
会议:复杂几何中的渐进:纪念史蒂夫·泽尔迪奇的会议
- 批准号:
2348566 - 财政年份:2024
- 资助金额:
$ 53.31万 - 项目类别:
Standard Grant
Conference: Complex Analysis and Geometry
会议:复杂分析与几何
- 批准号:
2246362 - 财政年份:2023
- 资助金额:
$ 53.31万 - 项目类别:
Standard Grant
Climate Neutral and Digitalized Laser Based Surface Functionalization of Parts with Complex Geometry
具有复杂几何形状的零件的气候中性和基于数字化激光的表面功能化
- 批准号:
10066538 - 财政年份:2023
- 资助金额:
$ 53.31万 - 项目类别:
EU-Funded
Geometry Aware Exploratory Data Analysis and Inference Methods for Complex Data
复杂数据的几何感知探索性数据分析和推理方法
- 批准号:
2311034 - 财政年份:2023
- 资助金额:
$ 53.31万 - 项目类别:
Standard Grant
Canonical metrics and stability in complex geometry
复杂几何中的规范度量和稳定性
- 批准号:
2305296 - 财政年份:2023
- 资助金额:
$ 53.31万 - 项目类别:
Standard Grant
Differential Equations in Complex Riemannian Geometry
复杂黎曼几何中的微分方程
- 批准号:
2203607 - 财政年份:2022
- 资助金额:
$ 53.31万 - 项目类别:
Continuing Grant
Local Geometry of Real and Complex Analytic Mappings
实数和复数解析映射的局部几何
- 批准号:
RGPIN-2018-04239 - 财政年份:2022
- 资助金额:
$ 53.31万 - 项目类别:
Discovery Grants Program - Individual
Complex Analysis, Dynamics, and Geometry via Non-Archimedean Methods
通过非阿基米德方法进行复杂分析、动力学和几何
- 批准号:
2154380 - 财政年份:2022
- 资助金额:
$ 53.31万 - 项目类别:
Continuing Grant
Special hermitian metrics in complex geometry
复杂几何中的特殊埃尔米特度量
- 批准号:
RGPIN-2017-05105 - 财政年份:2022
- 资助金额:
$ 53.31万 - 项目类别:
Discovery Grants Program - Individual