Reconstruction Algorithm for Computed Tomography

计算机断层扫描重建算法

基本信息

  • 批准号:
    0604056
  • 负责人:
  • 金额:
    $ 11.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-01 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

Computed Tomography (CT) offers a non-invasive method for two-dimensional cross-sectional or three-dimensional imaging of an object. In a typical CT application, the distribution of the attenuation coefficient through a body from measurements of x-ray transmission is estimated and used to reconstruct an image of the object. The algorithm currently used to generate an image from x-ray measurement data is the filtered backprojection (FBP) method, which has been the primary method for the past thirty years. The FBP method, based mathematically on the Fourier transform and convolution, is effective, but it also has a number of inherent drawbacks. The main objective of this project is to provide new algorithms, based on a new mathematical approach, that will be more effective, produce images of better quality, and use lower x-ray dose. The new algorithm is called OPED, as it is based on orthogonal polynomial expansions on the disk. The project will explore the mathematical properties of the OPED algorithms, such as convergence, speed, and resolution, with emphasis on applicability. It will also study the compatibility of the new algorithm and the scanning geometry of the x-ray input. Furthermore, it aims at extending the algorithms from two-dimensional to three-dimensional images.brbrComputer tomography is an important tool in biomedical research and has been widely used in diagnostic medicine in clinics and hospitals. It has also found widespread applications in many other scientific fields, including physics, chemistry, astronomy, geophysics, and biological sciences. The purpose of the project is to provide improved algorithms for image reconstruction in computed tomography. The goal is to develop algorithms that will produce images of high resolution with few artifacts in reasonable time and use relatively low x-ray dose to lower the risk of biological damage caused by excessive x-ray exposure. Such an algorithm will make the use of x-ray CT more effective in diagnostic medicine.
计算机断层扫描(CT)提供了一种非侵入性的方法,可以对物体进行二维、横断面或三维成像。在典型的CT应用中,根据X射线透射率的测量来估计通过物体的衰减系数的分布,并使用该分布来重建物体的图像。目前用于从X射线测量数据生成图像的算法是滤波反投影法(FBP),该方法在过去30年中一直是主要方法。数学上基于傅里叶变换和卷积的FBP方法是有效的,但它也有一些固有的缺陷。该项目的主要目标是基于一种新的数学方法提供新的算法,这种算法将更有效,产生更高质量的图像,并使用更低的X射线剂量。新算法被称为OpED,因为它基于磁盘上的正交多项式展开。该项目将探索OpEd算法的数学特性,如收敛、速度和分辨率,重点是适用性。它还将研究新算法与X射线输入的扫描几何的兼容性。此外,它的目标是将算法从二维图像扩展到三维图像。brbr计算机断层扫描是生物医学研究的重要工具,已广泛应用于临床和医院的诊断医学。它还在许多其他科学领域得到了广泛的应用,包括物理、化学、天文学、地球物理和生物科学。该项目的目的是为计算机断层成像中的图像重建提供改进的算法。目标是开发算法,在合理的时间内产生高分辨率的图像,几乎没有伪影,并使用相对较低的X射线剂量,以降低过度X射线暴露造成生物损害的风险。这样的算法将使x射线CT在诊断医学中的使用更加有效。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuan Xu其他文献

High-efficiency 3.5 μm luminescence of heavily Er doped multicomponent glasses
重掺铒多元玻璃的高效 3.5 μm 发光
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Yuan Xu;Chunyan Tao;Yinyan Li;Bingpeng Li;Feifei Huang;Junjie Zhang;Shiqing Xu
  • 通讯作者:
    Shiqing Xu
A novel robust ensemble model integrated extreme learning machine with multi-activation functions for energy modeling and analysis: Application to petrochemical industry
一种新颖的鲁棒集成模型,集成了极限学习机和多激活函数,用于能源建模和分析:在石化行业的应用
  • DOI:
    10.1016/j.energy.2018.08.069
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Xiao-Han Zhang;Qun-Xiong Zhu;Yan-Lin He;Yuan Xu
  • 通讯作者:
    Yuan Xu
Endpoint-Flexible Coflow Scheduling Across Geo-Distributed Datacenters
跨地理分布式数据中心的端点灵活协同流调度
Exploring surgical infection prediction: A comparative study of established risk indexes and a novel model
探索手术感染预测:既定风险指数与新模型的比较研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kjersti Mevik;A. Woldaregay;A. Ringdal;Karl Øyvind Mikalsen;Yuan Xu
  • 通讯作者:
    Yuan Xu
Hippocampal sclerosis and temporal lobe epilepsy following febrile status epilepticus: The FEBSTAT study.
发热性癫痫持续状态后的海马硬化和颞叶癫痫:FEBSTAT 研究。
  • DOI:
    10.1111/epi.17979
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Darrell V Lewis;James Voyvodic;S. Shinnar;Stephen Chan;Jacqueline A. Bello;Solomon L Moshé;D. Nordli;L. Frank;J. Pellock;D. Hesdorffer;Yuan Xu;Ruth C. Shinnar;Syndi Seinfeld;Leon G. Epstein;D. Masur;William Gallentine;Erica Weiss;Xiaoyan Deng;Shumei Sun
  • 通讯作者:
    Shumei Sun

Yuan Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuan Xu', 18)}}的其他基金

Approximation and Orthogonality in Sobolev Spaces
索博列夫空间中的逼近和正交性
  • 批准号:
    1510296
  • 财政年份:
    2015
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
Cubature rules and Approximation on Regular Domains
正则域上的体积规则和近似
  • 批准号:
    1106113
  • 财政年份:
    2011
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
Cubature Formulae and Orthogonal Polynomials of Several Variables
体积公式和多变量正交多项式
  • 批准号:
    0201669
  • 财政年份:
    2002
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
Cubature Formulae and Orthogonal Polynomials in Several Variables
体积公式和多变量正交多项式
  • 批准号:
    9802265
  • 财政年份:
    1998
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Common Zeros of Polynomials in Several Variables and Cubature Formulae
数学科学:多变量多项式的公共零点和体积公式
  • 批准号:
    9500532
  • 财政年份:
    1995
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Gaussian Cubature Formula and its Applications
数学科学:高斯体积公式及其应用
  • 批准号:
    9302721
  • 财政年份:
    1993
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant

相似海外基金

SWIFT-SAT: Unlimited Radio Interferometry: A Hardware-Algorithm Co-Design Approach to RAS-Satellite Coexistence
SWIFT-SAT:无限无线电干涉测量:RAS 卫星共存的硬件算法协同设计方法
  • 批准号:
    2332534
  • 财政年份:
    2024
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
I-Corps: Cardiovascular Evaluation Algorithm
I-Corps:心血管评估算法
  • 批准号:
    2344006
  • 财政年份:
    2024
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
REU Site: Algorithm Design --- Theory and Engineering
REU网站:算法设计---理论与工程
  • 批准号:
    2349179
  • 财政年份:
    2024
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335904
  • 财政年份:
    2024
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335905
  • 财政年份:
    2024
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Continuing Grant
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
  • 批准号:
    2340273
  • 财政年份:
    2024
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Continuing Grant
SBIR Phase II: An Integrated Biomedical Platform and Custom Algorithm to Optimize Feeding Protocols for Preterm Infants
SBIR 第二阶段:用于优化早产儿喂养方案的综合生物医学平台和定制算法
  • 批准号:
    2335207
  • 财政年份:
    2024
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Cooperative Agreement
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
  • 批准号:
    2349567
  • 财政年份:
    2024
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
Probabilistic arrival time prediction algorithm using a-priori knowledge and machine learning to enable sustainable air traffic management
使用先验知识和机器学习的概率到达时间预测算法,以实现可持续的空中交通管理
  • 批准号:
    24K07723
  • 财政年份:
    2024
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了