Approximation and Orthogonality in Sobolev Spaces

索博列夫空间中的逼近和正交性

基本信息

  • 批准号:
    1510296
  • 负责人:
  • 金额:
    $ 15.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

This research project is concerned with the study of approximations of functions of several variables by families of simpler, polynomial functions (and related questions) in the setting of Sobolev spaces, which are abstract mathematical function spaces originally developed to study problems in mathematical physics and which are utilized today in a number of scientific computing settings. A truly complex system or problem is often intractable, and we often need to find an approximation that is more manageable. Approximation methods on domains in higher dimensional spaces are good examples of this principle, and they are crucial in many problems in applied mathematics. In contrast to one dimension, many challenging problems in higher dimensions that are of fundamental importance are not resolved. The Principal Investigator will study several problems on approximation and orthogonality in Sobolev spaces that rely on new connections and ideas revealed only recently. The project aims at both theoretical understanding and construction of new approximation methods, and the work has the potential to impact scientific computing, numerical analysis, statistics, and geoscience.The Principal Investigator will study approximation and orthogonality in Sobolev spaces on regular domains, such as cubes, balls, spheres, and simplexes. The project combines several research topics: approximation theory, Fourier analysis, numerical analysis, and orthogonal polynomials. One of the main problems originates from the area of spectral methods for the numerical solution of partial differential equations. Through recent work of the Principal Investigator and collaborators, it has become increasingly clear that understanding orthogonality in Sobolev spaces is crucial for approximation and computation in Sobolev spaces. This research will be based on recent progress in characterization of best approximation by polynomials on the unit sphere and on the unit ball, in Sobolev orthogonal polynomials, and in spectral approximation. The project is expected to lead to new scientific computational methods and new algorithms.
该研究项目关注的是在Sobolev空间的设置中由简单的多项式函数(和相关问题)的家庭对多变量函数的近似的研究,Sobolev空间是最初为研究数学物理问题而开发的抽象数学函数空间,今天在许多科学计算环境中使用。 一个真正复杂的系统或问题往往是棘手的,我们往往需要找到一个更易于管理的近似值。 高维空间中区域上的近似方法是这一原理的很好例子,它们在应用数学中的许多问题中是至关重要的。 与一维相反,许多具有根本重要性的更高维度的挑战性问题没有得到解决。 主要研究者将研究几个问题的近似和正交性的Sobolev空间,依赖于新的连接和想法,最近才发现。 该项目旨在理论理解和构建新的近似方法,并且该工作有可能影响科学计算,数值分析,统计和地球科学。首席研究员将研究Sobolev空间在规则域上的近似和正交性,例如立方体,球,球体和单形。 该项目结合了几个研究课题:近似理论,傅立叶分析,数值分析和正交多项式。 其中一个主要的问题源于该地区的谱方法的数值解偏微分方程。 通过主要研究者和合作者最近的工作,人们越来越清楚地认识到,理解Sobolev空间中的正交性对于Sobolev空间中的近似和计算至关重要。 这项研究将基于最近的进展,在表征最佳逼近多项式的单位球和单位球,在索伯列夫正交多项式,并在谱近似。 预计该项目将导致新的科学计算方法和新的算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuan Xu其他文献

Reference ranges for serum insulin-like growth factor 1 (IGF-1) in healthy Chinese adults
中国健康成人血清胰岛素样生长因子1(IGF-1)参考范围
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Huijuan Zhu;Yuan Xu;Fengying Gong;Guangliang Shan;Hongbo Yang;Ke Xu;Dianxi Zhang;Xinqi Cheng;Zhihao Zhang;Shi Chen;Linjie Wang;Hui Pan
  • 通讯作者:
    Hui Pan
How do exchange rate movements affect Chinese exports? — A firm-level investigation
汇率变动对中国出口有何影响?
  • DOI:
    10.1016/j.jinteco.2015.04.006
  • 发表时间:
    2015-09
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Hongbin Li;Hong Ma;Yuan Xu
  • 通讯作者:
    Yuan Xu
Effect of recaesiation on AlGaAs photocathode: Ab initio calculations and experimental study
重钙化对 AlGaAs 光电阴极的影响:从头计算和实验研究
  • DOI:
    10.1016/j.ijleo.2016.11.138
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Yuan Xu
  • 通讯作者:
    Yuan Xu
Development of a low-drift integrator system on the HL-2A tokamak
HL-2A 托卡马克低漂移积分系统的开发
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Yuan Xu;Xiaoquan Ji;Qingwei Yang;Tengfei Sun;Baoshan Yan;Shaoyong Liang;Leilei Ren;Jian Zhou
  • 通讯作者:
    Jian Zhou
Synthesis and evaluation of a new Rhodamine B and Di(2-picolyl)amine conjugate as a highly sensitive and selective chemosensor for Al3+ and its application in living-cell imaging
新型罗丹明 B 和二(2-吡啶甲基)胺缀合物的合成和评估,作为 Al3 的高灵敏度和选择性化学传感器及其在活细胞成像中的应用
  • DOI:
    10.1016/j.bmc.2014.12.070
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Xiaofeng Bao;Qiansheng Cao;Yazhou Xu;Yuanxue Gao;Yuan Xu;Xuemei Nie;Baojing Zhou;Jing Zhu
  • 通讯作者:
    Jing Zhu

Yuan Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuan Xu', 18)}}的其他基金

Cubature rules and Approximation on Regular Domains
正则域上的体积规则和近似
  • 批准号:
    1106113
  • 财政年份:
    2011
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant
Reconstruction Algorithm for Computed Tomography
计算机断层扫描重建算法
  • 批准号:
    0604056
  • 财政年份:
    2006
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant
Cubature Formulae and Orthogonal Polynomials of Several Variables
体积公式和多变量正交多项式
  • 批准号:
    0201669
  • 财政年份:
    2002
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant
Cubature Formulae and Orthogonal Polynomials in Several Variables
体积公式和多变量正交多项式
  • 批准号:
    9802265
  • 财政年份:
    1998
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Common Zeros of Polynomials in Several Variables and Cubature Formulae
数学科学:多变量多项式的公共零点和体积公式
  • 批准号:
    9500532
  • 财政年份:
    1995
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Gaussian Cubature Formula and its Applications
数学科学:高斯体积公式及其应用
  • 批准号:
    9302721
  • 财政年份:
    1993
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant

相似海外基金

Study of 32-multiplexing transmission antenna system in the millimeter-wave band based on rectangular-coordinate two-dimensional polarity orthogonality
基于直角坐标二维极性正交性的毫米波段32复用发射天线系统研究
  • 批准号:
    21H01321
  • 财政年份:
    2021
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Sulfonium salts as pseudohalide electrophiles for cross-coupling having improved tractability, orthogonality, stability and environmental profile
锍盐作为用于交叉偶联的拟卤化物亲电子试剂,具有改进的易处理性、正交性、稳定性和环境特征
  • 批准号:
    2435222
  • 财政年份:
    2020
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Studentship
A Unified Multiple Access Framework for Next Generation Mobile Networks By Removing Orthogonality (MANGO)
通过消除正交性实现下一代移动网络的统一多址接入框架 (MANGO)
  • 批准号:
    EP/P009719/2
  • 财政年份:
    2018
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Research Grant
A Unified Multiple Access Framework for Next Generation Mobile Networks By Removing Orthogonality (MANGO)
通过消除正交性实现下一代移动网络的统一多址接入框架 (MANGO)
  • 批准号:
    EP/P009670/1
  • 财政年份:
    2017
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Research Grant
A Unified Multiple Access Framework for Next Generation Mobile Networks By Removing Orthogonality (MANGO)
通过消除正交性实现下一代移动网络的统一多址接入框架 (MANGO)
  • 批准号:
    EP/P009549/1
  • 财政年份:
    2017
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Research Grant
A Unified Multiple Access Framework for Next Generation Mobile Networks By Removing Orthogonality (MANGO)
通过消除正交性实现下一代移动网络的统一多址接入框架 (MANGO)
  • 批准号:
    EP/P009719/1
  • 财政年份:
    2017
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Research Grant
Asymptotics of products of spectral projections with applications to Anderson's orthogonality and entanglement entropy
谱投影乘积的渐近及其在安德森正交性和纠缠熵中的应用
  • 批准号:
    308446886
  • 财政年份:
    2015
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Research Fellowships
Chemical orthogonality in tandem differential mobility spectrometry at ambient pressure
环境压力下串联差分迁移谱的化学正交性
  • 批准号:
    1306388
  • 财政年份:
    2013
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant
Almost orthogonality in harmonic analysis and its application
调和分析中的近似正交及其应用
  • 批准号:
    11640149
  • 财政年份:
    1999
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Convolution Orthogonality
数学科学:卷积正交性
  • 批准号:
    9102906
  • 财政年份:
    1991
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了