Cubature rules and Approximation on Regular Domains

正则域上的体积规则和近似

基本信息

  • 批准号:
    1106113
  • 负责人:
  • 金额:
    $ 14.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

XuDMS-1106113 The principal investigator studies cubature rules, which are numerical integration formulas for higher dimensional integrals, and approximation of functions on regular domains such as cubes, balls, spheres and simplexes. The project combines several topics: numerical analysis, discrete Fourier analysis, orthogonal polynomials, and approximation theory. Two approaches are emphasized. The first approach is based on a connection between cubature rules and discrete Fourier analysis with translation tiling. The approach allows one to study, in several stages, cubature rules and interpolation by exponential functions on the fundamental domain of the translation tiling, by trigonometric functions on the fundamental simplex of the domain, and by algebraic polynomials on corresponding domains, and it yields results on cubature rules, interpolation, orthogonal polynomials and approximation. The second approach starts with a characterization of best approximation by polynomials on the sphere and on the ball in terms of the smoothness of the functions being approximated, while the smoothness is measured by the differences of the function values in Euler angles. This line of work is based on recent results of the investigator and his collaborators that for some problems it is necessary to work with these angles, even though their number is much larger than the dimension. Cubature rules, which are multidimensional numerical integration formulas, and approximation on regular domains in higher dimensional spaces are fundamental tools in a variety of applications, because most integrals can only be evaluated numerically and very few problems can be evaluated exactly. At the current stage, in contrast to the situation in one dimension, many fundamental problems in these two areas have not been resolved, despite increasing need for them in applications. The project aims at finding new methods to construct numerically efficient algorithms, such as accurate cubature rules with fewer nodes, fast discrete Fourier transforms, and approximation operators on regular domains such as cubes, balls, spheres and simplexes. The algorithms have applications in scientific computing, imaging, statistics, and geosciences.
徐DMS-1106113 主要研究人员研究cubature规则,这是高维积分的数值积分公式,以及在立方体,球,球体和单形等规则域上的函数近似。 该项目结合了几个主题:数值分析,离散傅立叶分析,正交多项式和逼近理论。 强调两种方法。 第一种方法是基于体积规则和离散傅立叶分析与平移平铺之间的连接。 该方法允许一个研究,在几个阶段,容积规则和插值指数函数的基本域的平移平铺,三角函数的基本单形的域,并通过代数多项式相应的域,它产生的结果容积规则,插值,正交多项式和近似。 第二种方法开始与最佳逼近的表征多项式的领域和球上的平滑度的函数被近似,而平滑度是由欧拉角的函数值的差异来衡量。 这一系列的工作是基于最近的研究结果和他的合作者,对于某些问题,有必要与这些角度,即使他们的数量是远远大于尺寸。 立方规则,这是多维数值积分公式,以及在高维空间中的正则域上的近似是各种应用中的基本工具,因为大多数积分只能数值计算,很少有问题可以精确计算。 在现阶段,与一维的情况相反,这两个领域的许多基本问题尚未解决,尽管在应用中对它们的需求越来越大。 该项目旨在寻找新的方法来构建数值高效算法,例如具有更少节点的精确体积规则,快速离散傅立叶变换以及立方体,球,球体和单形等规则域上的近似运算符。 这些算法在科学计算、成像、统计和地球科学中有应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuan Xu其他文献

High-efficiency 3.5 μm luminescence of heavily Er doped multicomponent glasses
重掺铒多元玻璃的高效 3.5 μm 发光
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Yuan Xu;Chunyan Tao;Yinyan Li;Bingpeng Li;Feifei Huang;Junjie Zhang;Shiqing Xu
  • 通讯作者:
    Shiqing Xu
A novel robust ensemble model integrated extreme learning machine with multi-activation functions for energy modeling and analysis: Application to petrochemical industry
一种新颖的鲁棒集成模型,集成了极限学习机和多激活函数,用于能源建模和分析:在石化行业的应用
  • DOI:
    10.1016/j.energy.2018.08.069
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Xiao-Han Zhang;Qun-Xiong Zhu;Yan-Lin He;Yuan Xu
  • 通讯作者:
    Yuan Xu
Endpoint-Flexible Coflow Scheduling Across Geo-Distributed Datacenters
跨地理分布式数据中心的端点灵活协同流调度
Exploring surgical infection prediction: A comparative study of established risk indexes and a novel model
探索手术感染预测:既定风险指数与新模型的比较研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kjersti Mevik;A. Woldaregay;A. Ringdal;Karl Øyvind Mikalsen;Yuan Xu
  • 通讯作者:
    Yuan Xu
Hippocampal sclerosis and temporal lobe epilepsy following febrile status epilepticus: The FEBSTAT study.
发热性癫痫持续状态后的海马硬化和颞叶癫痫:FEBSTAT 研究。
  • DOI:
    10.1111/epi.17979
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Darrell V Lewis;James Voyvodic;S. Shinnar;Stephen Chan;Jacqueline A. Bello;Solomon L Moshé;D. Nordli;L. Frank;J. Pellock;D. Hesdorffer;Yuan Xu;Ruth C. Shinnar;Syndi Seinfeld;Leon G. Epstein;D. Masur;William Gallentine;Erica Weiss;Xiaoyan Deng;Shumei Sun
  • 通讯作者:
    Shumei Sun

Yuan Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuan Xu', 18)}}的其他基金

Approximation and Orthogonality in Sobolev Spaces
索博列夫空间中的逼近和正交性
  • 批准号:
    1510296
  • 财政年份:
    2015
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Standard Grant
Reconstruction Algorithm for Computed Tomography
计算机断层扫描重建算法
  • 批准号:
    0604056
  • 财政年份:
    2006
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Standard Grant
Cubature Formulae and Orthogonal Polynomials of Several Variables
体积公式和多变量正交多项式
  • 批准号:
    0201669
  • 财政年份:
    2002
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Standard Grant
Cubature Formulae and Orthogonal Polynomials in Several Variables
体积公式和多变量正交多项式
  • 批准号:
    9802265
  • 财政年份:
    1998
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Common Zeros of Polynomials in Several Variables and Cubature Formulae
数学科学:多变量多项式的公共零点和体积公式
  • 批准号:
    9500532
  • 财政年份:
    1995
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Gaussian Cubature Formula and its Applications
数学科学:高斯体积公式及其应用
  • 批准号:
    9302721
  • 财政年份:
    1993
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Standard Grant

相似海外基金

MFB: Cracking the codes: understanding the rules of mRNA localization and translation
MFB:破解密码:了解 mRNA 定位和翻译的规则
  • 批准号:
    2330283
  • 财政年份:
    2024
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Standard Grant
REU Site: Quantitative Rules of Life: General Theories across Biological Systems
REU 网站:生命的定量规则:跨生物系统的一般理论
  • 批准号:
    2349052
  • 财政年份:
    2024
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Standard Grant
Rules of life in CO2-driven microbial communities: Microbiome engineering for a Net Zero future
二氧化碳驱动的微生物群落的生命规则:净零未来的微生物组工程
  • 批准号:
    BB/Y003195/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Research Grant
Unravelling the structural rules of antiperovskites and their derivatives
揭示反钙钛矿及其衍生物的结构规则
  • 批准号:
    23K23045
  • 财政年份:
    2024
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Taming of the Streptomycete: Understanding the rules of domestication in antibiotic-producing bacteria
驯服链霉菌:了解产生抗生素的细菌的驯化规则
  • 批准号:
    BB/Y00082X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Research Grant
CAREER: Computing rules of the social brain: behavioral mechanisms of function and dysfunction in biological collectives
职业:社会大脑的计算规则:生物集体中功能和功能障碍的行为机制
  • 批准号:
    2338596
  • 财政年份:
    2024
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Continuing Grant
URoL:ASC: Using Rules of Life to Capture Atmospheric Carbon: Interdisciplinary Convergence to Accelerate Research on Biological Sequestration (CARBS)
URoL:ASC:利用生命规则捕获大气碳:跨学科融合加速生物固存 (CARBS) 研究
  • 批准号:
    2319597
  • 财政年份:
    2024
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Standard Grant
UNDERSTANDING THE RULES OF LIFE - Regulation of cellular stress responses by long noncoding RNAs
了解生命规则 - 长非编码 RNA 调节细胞应激反应
  • 批准号:
    2890784
  • 财政年份:
    2023
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Studentship
Collaborative Research: URoL:ASC: Applying rules of life to forecast emergent behavior of phytoplankton and advance water quality management
合作研究:URoL:ASC:应用生命规则预测浮游植物的紧急行为并推进水质管理
  • 批准号:
    2318862
  • 财政年份:
    2023
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Standard Grant
Transition: Metabolomics-driven understanding of rules that coordinate metabolic responses and adaptive evolution of synthetic biology chassis
转变:代谢组学驱动的对协调代谢反应和合成生物学底盘适应性进化的规则的理解
  • 批准号:
    2320104
  • 财政年份:
    2023
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了