Research on Lagrangian Mean Curvature Flow and Yamabe Invariants
拉格朗日平均曲率流与Yamabe不变量的研究
基本信息
- 批准号:0604164
- 负责人:
- 金额:$ 11.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to study geometric flows and the relationship between curvature and topology. Regarding geometric flows, the principal investigator plans to study higher codimension mean curvature flow, which is the gradient flow for the area functional. More precisely, we plan to study mean curvature flow deformation of Lagrangian submanifolds. In his thesis, the principal investigator showed that finite time singularities are unavoidable, i.e., they occur in many cases where experts were hoping they would not occur, and then he proved the optimal result about the infinitesimal behavior of singularities. We plan to investigate other settings on which we can understand singularities and also to understand the size of the singular set at the time of the first singularity. This last question is very challenging and a satisfactory answer would be a breakthrough in the field. Regarding the relationship between curvature and topology we plane to investigate which constant scalar curvature metrics does a 3-manifold admit. More specifically, we intent to extend the investigator's previous work and hope to unveil a large class of manifolds $L$ for which $M$ and $M\#L$ have the same ``type'' of constant positive scalar curvature metrics. The underlying philosophy of many problems in geometric analysis is to given a geometric object being able to find another geometric object carrying the same type of information but having better properties. For instance, if one is studying the paths that go from A to B, the best possible path would be the one with shortest lenght. Both problems addressed in this research project obey this guiding principle. In the first one we try to use a heat -equation flow method to deform certain kinds of Lagrangian submanifolds into those that are still Lagrangian but have the least area possible. This is expected to have very nice applications in mathematical physics (more precisely in the SYZ conjecture). In the second problem we try to understand which geometric information does a constant scalar curvature metric carry. It is known that for surfaces these metrics determine its topological type. For 3-manifolds it is know that constant Ricci curvature determines the manifold. It is an important open problem to understand, for 3-dimensional manifolds, the information that can be extracted from constant scalar curvature metrics.
这个项目的目的是研究几何流动以及曲率和拓扑之间的关系。在几何流方面,本课题拟研究高协维平均曲率流,即面积泛函的梯度流。更确切地说,我们计划研究拉格朗日子流形的平均曲率流变形。在他的论文中,首席研究员证明了有限时间奇点是不可避免的,即在许多专家希望奇点不发生的情况下,它们会发生,然后他证明了奇点的无穷小行为的最优结果。我们计划研究其他可以理解奇点的设置,并了解第一个奇点时奇异集的大小。最后一个问题是非常具有挑战性的,一个令人满意的答案将是该领域的一个突破。针对曲率与拓扑的关系,探讨了三流形中哪些常数标量曲率度量是允许的。更具体地说,我们打算扩展研究者之前的工作,并希望揭示一类大型流形$L$,其中$M$和$M\#L$具有相同的常数正标量曲率度量的“类型”。几何分析中许多问题的基本原理是,给定一个几何对象,能够找到另一个几何对象,该几何对象携带相同类型的信息,但具有更好的性质。例如,如果要研究从A到B的路径,最佳路径就是长度最短的路径。本课题研究的两个问题都遵循这一指导原则。在第一个例子中,我们尝试用热方程流动法将某些类型的拉格朗日子流形变形为那些仍然是拉格朗日的但面积尽可能小的流形。这有望在数学物理(更准确地说,在SYZ猜想中)中有很好的应用。在第二个问题中,我们试着理解常数标量曲率度量所携带的几何信息。众所周知,对于曲面,这些指标决定了它的拓扑类型。对于3流形,已知恒定的里奇曲率决定了流形。对于三维流形,如何从常数标量曲率度量中提取信息是一个重要的开放性问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andre Neves其他文献
3-manifolds with Yamabe invariant greater than that of RP^3
Yamabe 不变量大于 RP^3 的 3-流形
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Kazuo Akutagawa;Andre Neves - 通讯作者:
Andre Neves
Andre Neves的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andre Neves', 18)}}的其他基金
Differential Geometry and Minimal Surfaces
微分几何和最小曲面
- 批准号:
2305255 - 财政年份:2023
- 资助金额:
$ 11.14万 - 项目类别:
Standard Grant
Differential Geometry and Minimal Surfaces
微分几何和最小曲面
- 批准号:
2005468 - 财政年份:2020
- 资助金额:
$ 11.14万 - 项目类别:
Continuing Grant
Variational Theory and Spectral Theory of the Volume Functional
体积泛函的变分理论和谱理论
- 批准号:
1710846 - 财政年份:2017
- 资助金额:
$ 11.14万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
hypertoric 簇上的辛对偶与量子化Lagrangian对应
- 批准号:12371064
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于Lagrangian-DG方法的水下爆炸全时域流固耦合模拟研究
- 批准号:52001010
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
多尺度随机Eulerian-Lagrangian方法
- 批准号:11601381
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
非凸二次优化的Lagrangian对偶理论与应用
- 批准号:11571029
- 批准年份:2015
- 资助金额:45.0 万元
- 项目类别:面上项目
可压缩湍流粒子输运的拉格朗日(Lagrangian)研究
- 批准号:U1330107
- 批准年份:2013
- 资助金额:50.0 万元
- 项目类别:联合基金项目
锥优化的修正Lagrangian对偶理论研究
- 批准号:11101248
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
非线性修正Lagrangian对偶理论及其应用
- 批准号:11026047
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
紧致曲面上Lagrangian系统的Mather理论
- 批准号:11026129
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Computing Lagrangian means in multi-timescale fluid flows
计算多时间尺度流体流动中的拉格朗日均值
- 批准号:
EP/Y021479/1 - 财政年份:2024
- 资助金额:
$ 11.14万 - 项目类别:
Research Grant
Development of an entirely Lagrangian hydro-elastoviscoplastic FSI solver for design of resilient ocean/coastal structures
开发完全拉格朗日水弹粘塑性 FSI 求解器,用于弹性海洋/沿海结构的设计
- 批准号:
24K07680 - 财政年份:2024
- 资助金额:
$ 11.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lagrangian Multiforms for Symmetries and Integrability: Classification, Geometry, and Applications
对称性和可积性的拉格朗日多重形式:分类、几何和应用
- 批准号:
EP/Y006712/1 - 财政年份:2024
- 资助金额:
$ 11.14万 - 项目类别:
Fellowship
Critical symplectic geometry, Lagrangian cobordisms, and stable homotopy theory
临界辛几何、拉格朗日配边和稳定同伦理论
- 批准号:
2305392 - 财政年份:2023
- 资助金额:
$ 11.14万 - 项目类别:
Standard Grant
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2306233 - 财政年份:2023
- 资助金额:
$ 11.14万 - 项目类别:
Continuing Grant
Quantized Lagrangian submanifolds of moduli spaces and representation theory
模空间的量化拉格朗日子流形和表示理论
- 批准号:
2302624 - 财政年份:2023
- 资助金额:
$ 11.14万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating the Ocean Dynamics Governing Melt at Glaciers Using Lagrangian Floats
合作研究:利用拉格朗日浮标阐明控制冰川融化的海洋动力学
- 批准号:
2319494 - 财政年份:2023
- 资助金额:
$ 11.14万 - 项目类别:
Standard Grant
Study of rain fall based on super-droplet method and hierarchical Lagrangian analysis
基于超液滴法和分层拉格朗日分析的降雨研究
- 批准号:
23K03265 - 财政年份:2023
- 资助金额:
$ 11.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unraveling anomalous transport in turbulence via two-time correlation function of Lagrangian velocity
通过拉格朗日速度的二次相关函数揭示湍流中的异常传递
- 批准号:
23K03247 - 财政年份:2023
- 资助金额:
$ 11.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ventilation and mixing of surface and intermediate waters in the tropical Atlantic: perspectives from Lagrangian particles and tracers
热带大西洋表层水和中间水的通风和混合:拉格朗日粒子和示踪剂的视角
- 批准号:
2219852 - 财政年份:2023
- 资助金额:
$ 11.14万 - 项目类别:
Standard Grant