Variational Theory and Spectral Theory of the Volume Functional
体积泛函的变分理论和谱理论
基本信息
- 批准号:1710846
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Award: DMS 1710846, Principal Investigator: Andre NevesThe study of shapes that are in an equilibrium position was started by Lagrange 300 year ago. These special shapes are called minimal surfaces and they are ubiquitous in Science, serving to model soap films, black holes in General Relativity, or tensile structures in architecture. Moreover, they come in two types: those which are stable, i.e., if perturbed they return to their original equilibrium position and those which are unstable, i.e., if perturbed they move away from their original position. The first type has been extensively studied in Mathematics over the last 40 years and they have been used to solve many long standing open questions in Geometry and Mathematical Relativity. The second type started being studied more systematically some years ago by Marques and the PI and they were used to solve some open problems such as the Willmore Conjecture or the problem of finding infinitely many unstable minimal surfaces. The project presented plans to continue the study of unstable minimal surfaces. Its goals are twofold: On one hand to develop the theory that governs their existence and on the other hand to study their properties as the degrees of instability become quite large because this is expected to uncover new relations across Geometry, Topology, and Analysis.More precisely, the objectives of the project are to further develop the Almgren-Pitts Min-max Theory and to study the properties of minimal surfaces when seen as nonlinear eigenvalues to the volume spectrum. For the first part we aim to investigate how to bound from below the index of min-max minimal surfaces by the number of parameters and to relate that problem with the multiplicity one conjecture. An application of that result would be to solve a stronger version of a conjecture of Yau. The second objective is motivated by the recent Weyl Law for the volume spectrum that the PI proved with Marques and Liokumovich. This property suggests a stronger analogy between eigenfunctions for the Laplacian spectrum and minimal surfaces that we intend to explore and the possibility to prove Weyl Laws for many other nonlinear problems. The techniques involved combine ideas from Spectral Geometry, Morse Theory, and Minimal Surface theory.
奖项:DMS 1710846,首席研究员:安德烈·内夫斯对处于平衡位置的形状的研究始于300年前的拉格朗日。这些特殊的形状被称为最小表面,它们在科学中无处不在,用于模拟肥皂膜,广义相对论中的黑洞或建筑中的拉伸结构。 此外,它们有两种类型:稳定的,即,如果受到扰动,则它们返回到它们的原始平衡位置,而那些不稳定的,即,如果受到扰动,则它们会离开其原始位置。 在过去的40年里,第一种类型在数学中得到了广泛的研究,它们被用来解决几何和数学相对论中许多长期存在的开放性问题。第二种类型开始被更系统地研究几年前由马克斯和PI和他们被用来解决一些开放的问题,如Willmore猜想或问题,找到无穷多个不稳定的极小曲面。该项目提出了继续研究不稳定极小曲面的计划。其目标有两个:一方面发展理论,支配他们的存在,另一方面研究他们的性质,因为不稳定的程度变得相当大,因为这有望揭示新的关系,几何,拓扑和分析。更确切地说,该项目的目标是进一步发展阿尔姆皮茨矿业,max理论,研究极小曲面作为体谱非线性特征值时的性质。对于第一部分,我们的目标是研究如何从下面的指标的最小最大极小曲面的参数的数量,并与该问题的多重性一猜想。这个结果的一个应用是解决丘的一个猜想的更强版本。第二个目标是由最近的外尔定律的体积谱,PI证明与马克斯和Liokumovich。这一性质表明,拉普拉斯谱和极小曲面的本征函数之间有更强的相似性,我们打算探索和证明许多其他非线性问题的外尔定律的可能性。所涉及的技术联合收割机的想法,从光谱几何,莫尔斯理论,最小曲面理论。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Equidistribution of minimal hypersurfaces for generic metrics
- DOI:10.1007/s00222-018-00850-5
- 发表时间:2017-12
- 期刊:
- 影响因子:3.1
- 作者:F. C. Marques;A. Neves;Antoine Song
- 通讯作者:F. C. Marques;A. Neves;Antoine Song
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andre Neves其他文献
3-manifolds with Yamabe invariant greater than that of RP^3
Yamabe 不变量大于 RP^3 的 3-流形
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Kazuo Akutagawa;Andre Neves - 通讯作者:
Andre Neves
Andre Neves的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andre Neves', 18)}}的其他基金
Differential Geometry and Minimal Surfaces
微分几何和最小曲面
- 批准号:
2305255 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Differential Geometry and Minimal Surfaces
微分几何和最小曲面
- 批准号:
2005468 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Research on Lagrangian Mean Curvature Flow and Yamabe Invariants
拉格朗日平均曲率流与Yamabe不变量的研究
- 批准号:
0604164 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Spectral theory of relativistic quantum Hamiltonians
相对论量子哈密顿量的谱论
- 批准号:
2903825 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Studentship
Spectral theory of Schrodinger forms and Stochastic analysis for weighted Markov processes
薛定谔形式的谱论和加权马尔可夫过程的随机分析
- 批准号:
23K03152 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies of multi-dimensional quantum walks by spectral scattering theory
光谱散射理论研究多维量子行走
- 批准号:
23K03224 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectral Theory and Applications for Models with Localized or Boundary Defects
具有局部或边界缺陷模型的谱理论和应用
- 批准号:
2307384 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Developing quantum probabilistic approach to spectral graph theory and multi-variate orthogonal polynomials
开发谱图理论和多元正交多项式的量子概率方法
- 批准号:
23K03126 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harmonic analysis techniques in spectral theory
谱理论中的谐波分析技术
- 批准号:
EP/X011488/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
- 批准号:
2154335 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Combinatorial matrix theory and spectral analysis
组合矩阵理论和谱分析
- 批准号:
RGPIN-2022-05137 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Spectral theory of singular surfaces
奇异表面的谱理论
- 批准号:
RGPIN-2018-04389 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




