Collaborative Research: Symmetry-Breaking Bifurcations in an Oscillating Fluid Layer

合作研究:振荡流体层中的对称破缺分岔

基本信息

项目摘要

PROPOSAL NO.: CTS-0604376/0620872PRINCIPAL INVESTIGATORS: MARK R. PAUL/EDGAR KNOBLOCHINSTITUTION: VPI/ UNIVERSITY OF CAL- BERKELEYSGER: Collaborative Research: Symmetry-Breaking Bifurcations in an Oscillating Fluid Layer This grant will support exploratory research to investigate symmetry-breaking bifurcations in fluid dynamics. The investigation focuses on the numerical exploration of a new class of pattern-forming equations governing the interplay between spontaneous and forced symmetry breaking in a fluid system of direct experimental interest - complex wave dynamics on the surface of a vertically oscillating fluid layer in a gravitational field, also known as the Faraday system. Faraday waves are common in low gravity environments where residual acceleration or g-jitter, due to crew maneuvering and machinery, has a significant impact on both material processing systems and on-board experiments. Also, sensors have been proposed to measure the properties of protein monolayers through measurable effects upon the Faraday wave damping. The coupled amplitude-streaming flow equations are more complex than amplitude equations and more complex than Navier-Stokes hydrodynamics since the boundary conditions are given in terms of the wave amplitudes. However, they are substantially simpler to solve than the governing viscous free-surface problem because all terms are formally of order one and the boundary conditions are applied at the undisturbed surface. A numerical exploration of the coupled amplitude-streaming flow equations for realistic experimental geometries will provide a unique opportunity to probe the fundamental physics governing the Faraday problem. The approach is risky in that there is no guarantee that the coupled amplitude-streaming flow equations capture all of the physics necessary to describe the intriguing experimental results. In particular, there is much uncertainty concerning the role of meniscus dynamics at the lateral walls and, in fact, many experiments do not report the necessary experimental parameter values that would permit detailed modeling. The outcomes of this work are applicable to a variety of technologies, e.g. design and operation of future microgravity vehicles and experiments, the development of large-scale uniform patterning technologies, and molecular sensors. Additionally, the findings of this research will be used to help support the development of a new graduate course at Virginia Tech on the theoretical modeling of spatiotemporal dynamics.
建议编号:CTS-0604376/0620872研究人员:Mark R.Paul/Edgar KNOBLOCHINSTUTION:VPI/加州大学伯克利分校:合作研究:振荡流体层中的对称破坏分叉这笔赠款将支持探索性研究,以研究流体动力学中的对称破坏分叉。这项研究的重点是数值探索一类新的图案形成方程,该方程控制着直接实验感兴趣的流体系统中自发对称破缺和强制对称破缺之间的相互作用--引力场中垂直振荡流体层表面上的复波动力学,也称为法拉第系统。法拉第波在低重力环境中很常见,在这种环境中,由于机组人员的操纵和机械操作,剩余加速度或g抖动对材料处理系统和机载实验都有重大影响。此外,还提出了通过对法拉第波衰减的可测量影响来测量蛋白质单分子层的性质的传感器。由于边界条件是以波幅形式给出的,因此耦合波幅流方程比波幅方程更复杂,也比Navier-Stokes流体力学更复杂。然而,它们比控制粘性自由面问题要简单得多,因为所有项形式上都是一阶的,边界条件应用于未扰动的表面。对于实际实验几何形状的耦合振幅-流动方程的数值探索将为探索支配法拉第问题的基本物理提供一个独特的机会。这种方法是有风险的,因为不能保证耦合的振幅-流动方程能够捕捉描述有趣的实验结果所需的所有物理信息。特别是,关于半月板动力学在侧壁上的作用有很大的不确定性,事实上,许多实验没有报告必要的实验参数值,以便进行详细的建模。这项工作的成果适用于各种技术,如未来微重力飞行器和实验的设计和操作、大规模均匀图案化技术的开发和分子传感器。此外,这项研究的发现将被用来帮助支持弗吉尼亚理工大学关于时空动力学理论建模的新研究生课程的开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Paul其他文献

Spatiotemporal dynamics of the covariant Lyapunov vectors of chaotic convection.
混沌对流协变李雅普诺夫向量的时空动力学。
  • DOI:
    10.1103/physreve.97.032216
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Xu;Mark Paul
  • 通讯作者:
    Mark Paul
Propagating fronts in fluids with solutal feedback.
通过溶液反馈在流体中传播前沿。
  • DOI:
    10.1103/physreve.101.032214
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saikat Mukherjee;Mark Paul
  • 通讯作者:
    Mark Paul
Global Crustal Thickness Revealed by Surface Waves Orbiting Mars
绕火星运行的表面波揭示了全球地壳厚度
  • DOI:
    10.1029/2023gl103482
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Doyeon Kim;C. Durán;Domenico Giardini;A. Plesa;C. Simon;Stähler;Christian Boehm;V. Lekić;S. McLennan;S. Ceylan;John;Clinton;P. M. Davis;Amir Khan;B. Knapmeyer‐Endrun;Mark Paul;Panning;M. Wieczorek;Philippe Lognonné
  • 通讯作者:
    Philippe Lognonné
Philip Ackerman-Leist: Rebuilding the foodshed: how to create local, sustainable, and secure food systems
  • DOI:
    10.1007/s10460-016-9728-x
  • 发表时间:
    2016-10-05
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Mark Paul
  • 通讯作者:
    Mark Paul

Mark Paul的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Paul', 18)}}的其他基金

The Geometry and Building Blocks of Chaotic Fluid Convection
混沌流体对流的几何结构和构建模块
  • 批准号:
    2151389
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The Complex Dynamics of Large Systems with Long-Range Interactions: New Insights from Covariant Lyapunov Vectors
具有长程相互作用的大型系统的复杂动力学:来自协变 Lyapunov 向量的新见解
  • 批准号:
    2138055
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: The Nonlinear Stochastic Dynamics of Micro and Nanomechanical Systems
合作研究:微纳机械系统的非线性随机动力学
  • 批准号:
    2001559
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Revealing the Geometry of Spatio-temporal Chaos with Computational Topology: Theory, Numerics and Experiments
合作研究:用计算拓扑揭示时空混沌的几何:理论、数值和实验
  • 批准号:
    1622299
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CDI-TYPE II--COLLABORATIVE RESEARCH: Using Algebraic Topology to Connect Models with Measurements in Complex Nonequilibrium Systems
CDI-TYPE II——协作研究:使用代数拓扑将模型与复杂非平衡系统中的测量联系起来
  • 批准号:
    1125234
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Spatiotemporal Chaos in Fluid Convection: New Physical Insights from Numerics
职业:流体对流中的时空混沌:来自数值的新物理见解
  • 批准号:
    0747727
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344490
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: PM: CeNTREX, A Search for Nuclear Time-Reversal Symmetry Violation with Quantum-State-Controlled TlF Molecules
合作研究:PM:CeNTREX,利用量子态控制的 TlF 分子寻找核时间反转对称性破坏
  • 批准号:
    2110405
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Symmetry-Guided Machine Learning for the Discovery of Topological Phononic Materials
合作研究:DMREF:用于发现拓扑声子材料的对称引导机器学习
  • 批准号:
    2118523
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: PM: CeNTREX, A Search for Nuclear Time-Reversal Symmetry Violation with Quantum-State-Controlled TlF Molecules
合作研究:PM:CeNTREX,利用量子态控制的 TlF 分子寻找核时间反转对称性破坏
  • 批准号:
    2110420
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Symmetry-Guided Machine Learning for the Discovery of Topological Phononic Materials
合作研究:DMREF:用于发现拓扑声子材料的对称引导机器学习
  • 批准号:
    2118448
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Connecting linguistic and perceptual development through symmetry
合作研究:通过对称性连接语言和知觉发展
  • 批准号:
    1941014
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Connecting linguistic and perceptual development through symmetry
合作研究:通过对称性连接语言和知觉发展
  • 批准号:
    1941006
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Parity-Time Symmetry and Anti-Symmetry in Quantum Optics
合作研究:量子光学中的宇称时间对称性和反对称性
  • 批准号:
    1806519
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Parity-Time Symmetry and Anti-Symmetry in Quantum Optics
合作研究:量子光学中的宇称时间对称性和反对称性
  • 批准号:
    1806523
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了