CAREER: Spatiotemporal Chaos in Fluid Convection: New Physical Insights from Numerics

职业:流体对流中的时空混沌:来自数值的新物理见解

基本信息

项目摘要

CBET-0747727PaulDespite their importance in many areas of engineering, nonequilibrium systems remain difficult to analyze, to control, to design, or to predict because of the nonlinear way that spatiotemporal patterns affect the transport of energy and matter, which in turn modifies the spatiotemporal patterns. Examples include the weather and climate, the efficiency of combustion and chemical reactions, the convection of biological organisms in the oceans, heart dynamics, crystal growth from a melt, and fluid turbulence. A particular challenge is to understand spatiotemporal chaos, a commonly observed behavior of nonequilibrium systems where properties of the system evolve aperiodically in time and space. New fundamental insights into the spatiotemporal chaos of spatially-extended nonequilibrium systems will be obtained through a detailed numerical investigation of Rayleigh-Benard convection (a thin horizontal layer of fluid heated uniformly from below). The PI has developed parallel numerical methods providing accurate simulations for the precise conditions of experiment. This research builds upon these successes to explore spatiotemporal chaos in large-aspect-ratio convective domains to make predictions that can be verified by experiment. These predictions are only possible by the recent convergence of increased computing power and improved numerical algorithms, including the continuing research progress of the PI. The research will probe the origins and basic building blocks of spatiotemporal chaos to quantify the number, size, and dynamics of the individual chaotic degrees of freedom. Numerical simulations will also shed new insight upon transport in a chaotic flow field. As examples, an exploration of the enhancement of combustion efficiency in premixed gases by complex fluid velocity fields will directly affect energy production and consumption; and an understanding of the fluid convection driven by the activity of biological organisms suspended in oceans will improve models of the climate. The education program is tightly coupled with this research to provide extensive opportunities for students at all levels to participate in state-of-the-art engineering research. The PI's pre-college outreach program is focused upon exposing a large group of students, with special emphasis on under-represented groups, to challenges facing engineering today with the goal of attracting, retaining, and eventually graduating a more diverse group of world-class engineers. The PI is working closely with the Virginia Tech Center for the Enhancement of Engineering Diversity to develop and implement programs that will reach over 400 pre-college students each year. The PI will develop, organize, and lead problem solving sessions that are guided by hands-on interactive numerical experiments. The numerical experiments will be directly related to this research and will spark the interests of young students with such subjects as the difficulty of weather prediction and the scientific meaning of the popular phrase "the Butterfly Effect." The interactive programs will be written in Java and publicly available on a computational science and engineering web site established for this purpose. The PI will mentor undergraduate students each academic year and each summer on projects related to this research. Students will be selected from the Multicultural Academic Opportunities Program (MAOP) and a NSF funded Summer Undergraduate Research Program (SURP). A new multidisciplinary graduate course will be developed entitled "Spatiotemporal Chaos." A major theme of the course will be the quantitative link between theory and experiment provided by the computations of this research. The education program will be carefully assessed and improved through a close collaboration with the Virginia Tech Engineering Education Department.
尽管非平衡系统在许多工程领域中很重要,但由于时空模式影响能量和物质传输的非线性方式,从而改变时空模式,因此非平衡系统仍然难以分析、控制、设计或预测。例如,天气和气候、燃烧和化学反应的效率、海洋中生物有机体的对流、心脏动力学、熔体中的晶体生长和流体湍流。一个特别的挑战是理解时空混沌,这是一种常见的非平衡系统的行为,系统的属性在时间和空间上非周期性地演变。通过对Rayleigh-Benard对流(从下方均匀加热的水平薄层流体)的详细数值研究,将获得对空间扩展的非平衡系统时空混沌的新的基本见解。PI开发了并行数值方法,为精确的实验条件提供了准确的模拟。这项研究建立在这些成功的基础上,探索大长宽比对流域中的时空混沌,以做出可以通过实验验证的预测。这些预测只有在最近计算能力的增强和改进的数值算法的收敛,包括PI的持续研究进展的情况下才有可能。这项研究将探索时空混沌的起源和基本构件,以量化个体混沌自由度的数量、大小和动力学。数值模拟还将对混沌流场中的传输提供新的见解。例如,探索通过复杂的流体速度场提高预混气体的燃烧效率将直接影响能源生产和消费;了解海洋中悬浮生物的活动所驱动的流体对流将改进气候模型。该教育计划与这项研究紧密结合在一起,为各级学生提供广泛的机会,参与最先进的工程研究。PI的大学前推广计划的重点是让一大群学生,特别是代表不足的群体,面对当今工程学面临的挑战,目标是吸引、留住并最终毕业于更多样化的世界级工程师群体。PI正在与弗吉尼亚理工大学加强工程多样性中心密切合作,开发和实施每年将惠及400多名大学预科学生的计划。PI将开发、组织和领导由实际操作的交互式数值实验指导的问题解决课程。数值实验将与这项研究直接相关,并将激发年轻学生的兴趣,如天气预报的难度和流行短语“蝴蝶效应”的科学含义。互动程序将用Java编写,并在为此目的建立的计算科学和工程网站上公开提供。PI将在每个学年和每个夏天就与这项研究相关的项目指导本科生。学生将从多元文化学术机会计划(MAOP)和NSF资助的暑期本科生研究计划(SURP)中挑选出来。一门新的多学科研究生课程将被开发出来,名为“时空混沌”。本课程的一个主要主题是本研究的计算结果所提供的理论与实验之间的定量联系。该教育计划将通过与弗吉尼亚理工大学工程教育部的密切合作进行仔细评估和改进。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Paul其他文献

Spatiotemporal dynamics of the covariant Lyapunov vectors of chaotic convection.
混沌对流协变李雅普诺夫向量的时空动力学。
  • DOI:
    10.1103/physreve.97.032216
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Xu;Mark Paul
  • 通讯作者:
    Mark Paul
Propagating fronts in fluids with solutal feedback.
通过溶液反馈在流体中传播前沿。
  • DOI:
    10.1103/physreve.101.032214
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saikat Mukherjee;Mark Paul
  • 通讯作者:
    Mark Paul
Global Crustal Thickness Revealed by Surface Waves Orbiting Mars
绕火星运行的表面波揭示了全球地壳厚度
  • DOI:
    10.1029/2023gl103482
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Doyeon Kim;C. Durán;Domenico Giardini;A. Plesa;C. Simon;Stähler;Christian Boehm;V. Lekić;S. McLennan;S. Ceylan;John;Clinton;P. M. Davis;Amir Khan;B. Knapmeyer‐Endrun;Mark Paul;Panning;M. Wieczorek;Philippe Lognonné
  • 通讯作者:
    Philippe Lognonné
Philip Ackerman-Leist: Rebuilding the foodshed: how to create local, sustainable, and secure food systems
  • DOI:
    10.1007/s10460-016-9728-x
  • 发表时间:
    2016-10-05
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Mark Paul
  • 通讯作者:
    Mark Paul

Mark Paul的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Paul', 18)}}的其他基金

The Geometry and Building Blocks of Chaotic Fluid Convection
混沌流体对流的几何结构和构建模块
  • 批准号:
    2151389
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
The Complex Dynamics of Large Systems with Long-Range Interactions: New Insights from Covariant Lyapunov Vectors
具有长程相互作用的大型系统的复杂动力学:来自协变 Lyapunov 向量的新见解
  • 批准号:
    2138055
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: The Nonlinear Stochastic Dynamics of Micro and Nanomechanical Systems
合作研究:微纳机械系统的非线性随机动力学
  • 批准号:
    2001559
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Revealing the Geometry of Spatio-temporal Chaos with Computational Topology: Theory, Numerics and Experiments
合作研究:用计算拓扑揭示时空混沌的几何:理论、数值和实验
  • 批准号:
    1622299
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CDI-TYPE II--COLLABORATIVE RESEARCH: Using Algebraic Topology to Connect Models with Measurements in Complex Nonequilibrium Systems
CDI-TYPE II——协作研究:使用代数拓扑将模型与复杂非平衡系统中的测量联系起来
  • 批准号:
    1125234
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Symmetry-Breaking Bifurcations in an Oscillating Fluid Layer
合作研究:振荡流体层中的对称破缺分岔
  • 批准号:
    0604376
  • 财政年份:
    2006
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

基于分子动力学的沥青/集料界面行为Spatiotemporal模型
  • 批准号:
    51378073
  • 批准年份:
    2013
  • 资助金额:
    72.0 万元
  • 项目类别:
    面上项目

相似海外基金

Experimental Study on Transport Phenomena of Spatiotemporal Chaos Using Nematic Electroconvection
向列电对流时空混沌输运现象的实验研究
  • 批准号:
    22K03469
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Experimental Study on Generalized Langevin Description of Spatiotemporal Chaos
时空混沌广义朗之万描述的实验研究
  • 批准号:
    24540408
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of spatiotemporal chaos in chemotaxis models
趋化模型中时空混沌的研究
  • 批准号:
    361153-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Investigation of spatiotemporal chaos in chemotaxis models
趋化模型中时空混沌的研究
  • 批准号:
    361153-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Dynamics of coupled oscillators including inactive elements and the control of spatiotemporal chaos
包括非活动元素的耦合振荡器动力学和时空混沌控制
  • 批准号:
    22540397
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Controlling for Spatiotemporal Chaos in Dissipative Structures in Liquid Crystals
控制液晶耗散结构的时空混沌
  • 批准号:
    21540391
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of spatiotemporal chaos in chemotaxis models
趋化模型中时空混沌的研究
  • 批准号:
    361153-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Elucidation for Pattern Formation in Liquid Crystals -Nonequilibrium Fluctuation Theorem and Spatiotemporal Chaos-
液晶图案形成的阐明-非平衡涨落定理与时空混沌-
  • 批准号:
    21340110
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Spatiotemporal Chaos and Particle Dynamics in Complex Flows
复杂流动中的时空混沌和粒子动力学
  • 批准号:
    0803153
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Transient spatiotemporal chaos in regular and complex networks
规则和复杂网络中的瞬态时空混沌
  • 批准号:
    0653086
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了