Calculations in higher algebraic K-theory and related functors via derived categories
通过派生类别进行高等代数 K 理论和相关函子的计算
基本信息
- 批准号:0604583
- 负责人:
- 金额:$ 9.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main part of the proposal deals with the systematic development ofhigher Grothendieck-Witt groups, alias hermitian K-theory, of exactcategories and schemes, from the point of view of derived categories, andof certain Waldhausen categories with duality. In particular, the PI willinvestigate how to remove the ubiquitous assumption of "2 being invertible".In a second part, the wealth of known results on the structure of derivedcategories will be applied to yield new calculations in algebraicK-theory, higher Grothendieck-Witt theory, stabilized Witt-theory andcyclic homology. In a third part, the relation between hermitian K-theoryand A^1 homotopy theory will be investigated.Algebraic K-theory, higher Grothendieck-Witt theory, stabilizedWitt-theory and cyclic homology are "(co-) homology theories" used tostudy solutions of systems of polynomial equations. Cohomology theorieshave first been developed by algebraic topologists in order to studyproperties of geometric objects which don't change under smalldeformations. Later, in order to study systems of polynomial equations(whose properties can drastically change under small deformations),algebraic geometers/topologists developed analogous cohomology theoriesin an algebraic context. They allow us to use our intuition from 3dimensional space and our experience with working with real numbers, tounderstand polynomial equations in higher dimensions, and in other numbersystems, (used e.g in cryptography) where 1+1 could be equal to 0. Inorder to study these cohomology theories one needs to break up theirvalues into simpler building blocks, which, in general, is a verydifficult problem. Frequently, however, one can observe this "breaking upinto simpler building blocks" on the level of derived categories, whichare algebro-categorical objects attached with systems of polynomialequations. This project investigates the relationship between derivedcategories and the cohomology theories mentioned above.
该建议的主要部分涉及系统的发展更高的Grothendieck-Witt群,别名埃尔米特K理论,的exactcategories和计划,从角度来看,派生类别,并与对偶的某些Waldhausen类别。在第二部分中,我们将利用已有的关于导出范畴结构的大量结果,在代数K-理论、高阶Grothendieck-Witt理论、稳定Witt理论和循环同调等方面进行新的计算。第三部分研究了Hermitian K-理论与A^1同伦理论之间的关系,代数K-理论、高阶Grothendieck-Witt理论、稳定Witt理论和循环同调是研究多项式方程组解的“(余)同调理论”。上同调理论最初是由代数拓扑学家为了研究几何对象在小变形下不发生变化的性质而发展起来的。后来,为了研究多项式方程组(其性质可以在小变形下急剧变化),代数几何学家/拓扑学家在代数背景下发展了类似的上同调理论。它们允许我们使用我们的直觉从三维空间和我们的经验与工作与真实的数字,以了解多项式方程在更高的维度,并在其他numbersystem,(用于例如在密码学)其中1+1可以等于0。为了研究这些上同调理论,人们需要把它们的值分解成更简单的积木,这通常是一个非常困难的问题。然而,人们经常可以在派生范畴的层次上观察到这种“分解成更简单的积木”,派生范畴是与多项式方程系统相连的代数范畴对象。本项目研究了导出范畴与上述上同调理论之间的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marco Schlichting其他文献
Geometric models for higher Grothendieck–Witt groups in $$\mathbb {A}^1$$ -homotopy theory
- DOI:
10.1007/s00208-014-1154-z - 发表时间:
2014-12-07 - 期刊:
- 影响因子:1.400
- 作者:
Marco Schlichting;Girja S. Tripathi - 通讯作者:
Girja S. Tripathi
On the presentation of the Grothendieck–Witt group of symmetric bilinear forms over local rings
- DOI:
10.1007/s00209-024-03513-9 - 发表时间:
2024-05-23 - 期刊:
- 影响因子:1.000
- 作者:
Robert Rogers;Marco Schlichting - 通讯作者:
Marco Schlichting
Marco Schlichting的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marco Schlichting', 18)}}的其他基金
Higher Grothendieck-Witt groups and A1-homotopy theory
高等 Grothendieck-Witt 群和 A1 同伦理论
- 批准号:
EP/M001113/1 - 财政年份:2015
- 资助金额:
$ 9.77万 - 项目类别:
Research Grant
相似国自然基金
Higher Teichmüller理论中若干控制型问题的研究
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
高桡度(Higher-Twist)算符和量子色动力学因子化
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
Conference: Higher dimensional algebraic geometry
会议:高维代数几何
- 批准号:
2327037 - 财政年份:2023
- 资助金额:
$ 9.77万 - 项目类别:
Standard Grant
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
- 批准号:
2302447 - 财政年份:2023
- 资助金额:
$ 9.77万 - 项目类别:
Continuing Grant
Higher Multiplier Ideals and Other Applications of Hodge Theory in Algebraic Geometry
更高乘数理想及霍奇理论在代数几何中的其他应用
- 批准号:
2301526 - 财政年份:2023
- 资助金额:
$ 9.77万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2152235 - 财政年份:2022
- 资助金额:
$ 9.77万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2151946 - 财政年份:2022
- 资助金额:
$ 9.77万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2152088 - 财政年份:2022
- 资助金额:
$ 9.77万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2152311 - 财政年份:2022
- 资助金额:
$ 9.77万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2151718 - 财政年份:2022
- 资助金额:
$ 9.77万 - 项目类别:
Continuing Grant
ALGEBRAIC STRUCTURE OF MANIN SCHECHTMAN HIGHER BRAID GROUPS AND STRATIFICATIONS OF DISCRIMINANTAL ARRANGEMENTS
马宁谢赫曼高级辫群的代数结构和判别排列的分层
- 批准号:
21K03193 - 财政年份:2021
- 资助金额:
$ 9.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Higher Algebraic Structures in Symplectic Geometry and Applications
辛几何中的高等代数结构及其应用
- 批准号:
2105578 - 财政年份:2021
- 资助金额:
$ 9.77万 - 项目类别:
Standard Grant














{{item.name}}会员




