The Geometry and Topology of Quantum Invariants of Knots and 3-Manifolds
结和3-流形的量子不变量的几何和拓扑
基本信息
- 批准号:0604994
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns the quantum invariants of 3-manifolds and links in them. A main problem is that these invariants are poorly understood from the point of view of topology and geometry. The goal of this project is to make connections between the quantum invariants and the existing knowledge of the geometry and topology of 3-manifolds. The main approach will be an investigation of the large level asymptotic expansion of the quantum invariants of closed 3-manifolds. The idea of studying these asymptotics stems from Witten's work on the quantum invariants. From that work and subsequent work of mathematicians there have emerged some rigorous mathematical conjectures about the geometric content of these asymptotics. These conjectures indicate that the quantum invariants hide deep topological information. The PI plans to check, in collaboration with others, (some of) the conjectures via concrete case studies. E.g., he will jointly with J.E. Andersen continue their project on the surgeries on the figure 8 knot. All but a finite number of these 3-manifolds are hyperbolic and it is the hope that this case study can shed some light on the connection between quantum invariants and hyperbolic geometry. A main question is whether the quantum invariants can detect the volume of hyperbolic 3-manifolds. In addition the PI will try to work from a more general point of view, namely he will apply T. Yoshida's new approach to the quantum invariants to try to calculate the asymptotic expansion of the invariants for all closed 3-manifolds, Yoshida's construction being based on an abelianization of conformal field theory. In that connection the PI will jointly with Yoshida work on proving that Yoshida's invariants coincide with the more well established Reshetikhin--Turaev invariants thereby making a connection to the other approaches to the quantum invariants.This project tries to develop new techniques to obtain knowledge about the shape (topology) and geometry of low-dimensional objects such as knots and 3-dimensional spaces. A main reason that we should study low-dimensional spaces and their geometry and shape is that nature contains such spaces in many contexts. Thus large molecules, e.g. DNA, have a "knotted" structure and newer research points in the direction that one can apply knot invariants to obtain information about such molecules. Certain of their properties depend on their shape, e.g., how they are "knotted". Another example is in cosmology where a central question is: What is the "shape" of our universe? Here one should think of the fact that when we walk around on the earth it just looks like an ordinary plane but in fact the surface of the earth is like the surface of a very large ball. It is similar with our universe. Locally everything looks flat, i.e., locally our universe looks like a standard 3-dimensional Euclidean space (a 3-dimensional pendant to a plane), but maybe the universe as a whole is something completely different, like a curved compact space. Mathematicians use so-called invariants to detect topological and geometric properties of spaces, e.g., if they are curved like a sphere or not like a plane. The quantum invariants, the theme for this project, is a relatively new family of invariants dating back to V. Jones' discovery of the Jones polynomial in the 80ties.
这个项目涉及三维流形的量子不变量和其中的链接。一个主要的问题是,这些不变量是从拓扑和几何的角度了解甚少。这个项目的目标是建立量子不变量和三维流形的几何和拓扑的现有知识之间的联系。主要的方法是研究封闭三维流形的量子不变量的大尺度渐近展开。研究这些渐近性的想法源于维滕对量子不变量的研究。从这项工作和随后的工作的数学家已经出现了一些严格的数学公式的几何内容,这些渐近。 这些结果表明量子不变量隐藏了深层的拓扑信息。PI计划与其他人合作,通过具体的案例研究来检查(一些)认证。例如,在一个示例中,他将与J. E.安德森继续他们的8字结手术项目。 除了有限数量的这些三维流形是双曲的,这是希望这个案例研究可以揭示量子不变量和双曲几何之间的联系。一个主要的问题是量子不变量是否可以检测双曲三维流形的体积。此外,PI将尝试从更一般的角度工作,即他将应用T。吉田的量子不变量的新方法,试图计算所有封闭的3-流形的不变量的渐近展开,吉田的建设是基于共形场论的阿贝尔化。在这方面,PI将与吉田共同努力,证明吉田的不变量与更完善的Reshetikhin-Turaev不变量相一致,从而与量子不变量的其他方法建立联系。该项目试图开发新技术,以获得有关低维物体(如结和三维空间)的形状(拓扑)和几何形状的知识。我们应该研究低维空间及其几何和形状的一个主要原因是,自然界在许多情况下都包含这样的空间。因此,大分子,例如DNA,具有“打结”结构,并且更新的研究指向可以应用结不变量来获得关于此类分子的信息的方向。它们的某些性质取决于它们的形状,例如,它们是如何“打结”的。另一个例子是在宇宙学中,一个中心问题是:我们宇宙的“形状”是什么?在这里,人们应该想到这样一个事实,当我们在地球上行走时,它看起来就像一个普通的平面,但实际上地球的表面就像一个非常大的球的表面。它与我们的宇宙相似。 局部看起来一切都是平的,即,我们的宇宙在局部上看起来像一个标准的三维欧几里得空间(一个平面的三维挂件),但也许宇宙作为一个整体是完全不同的东西,就像一个弯曲的紧凑空间。数学家使用所谓的不变量来检测空间的拓扑和几何性质,例如,如果它们像球体一样弯曲或者不像平面。该项目的主题是量子不变量,它是一个相对较新的不变量家族,可以追溯到V. Jones在80年代发现琼斯多项式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Auckly其他文献
David Auckly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Auckly', 18)}}的其他基金
Collaborative Research: Conference: 2023-2025 Kansas Mathematics Graduate Student Conference
合作研究:会议:2023-2025年堪萨斯数学研究生会议
- 批准号:
2326561 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research in Gauge Theory
FRG:规范理论的合作研究
- 批准号:
1952755 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Midwest Geometry Conference 2019-2021
中西部几何会议 2019-2021
- 批准号:
1855861 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
NSF INCLUDES DDLP: Indigenous Math Circles Communities
NSF 包括 DDLP:本土数学圈社区
- 批准号:
1744474 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Brainstorming and Barnstorming: An REU site at KSU
头脑风暴和巡回演讲:KSU 的 REU 站点
- 批准号:
0453572 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9407465 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Fellowship Award
相似海外基金
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
LEAPS-MPS: Noncommutative Geometry and Topology of Quantum Metrics
LEAPS-MPS:量子度量的非交换几何和拓扑
- 批准号:
2316892 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Physics of interaband effects: Viewpoint of quantum geometry and topology
带间效应物理学:量子几何和拓扑的观点
- 批准号:
23K03243 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Surfaces and Geometry and Topology of Quantum Link Invariants
量子链接不变量的表面、几何和拓扑
- 批准号:
2244923 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Theoretical research for strongly correlated quantum systems in terms of topology and information geometry
强相关量子系统的拓扑和信息几何理论研究
- 批准号:
20K03769 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical Studies of Quantum Systems with Strong Interaction: Geometry and Topology of Quantum States and Flows
强相互作用量子系统的理论研究:量子态和流动的几何和拓扑
- 批准号:
1949963 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Symmetry, Geometry, and Topology of Quantum Many-Body States for Quantum Computation
用于量子计算的量子多体态的对称性、几何和拓扑
- 批准号:
1915011 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Surfaces and Geometry and Topology of Quantum Link Invariants
量子链接不变量的表面、几何和拓扑
- 批准号:
1907010 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
RUI: Knots in Three-Dimensional Manifolds: Quantum Topology, Hyperbolic Geometry, and Applications
RUI:三维流形中的结:量子拓扑、双曲几何和应用
- 批准号:
1906323 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant