Quantum Topology and Hyperbolic Geometry
量子拓扑和双曲几何
基本信息
- 批准号:1912700
- 负责人:
- 金额:$ 4.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-15 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides partial travel support for U.S. based researchers to participate in the international conference "Quantum Topology and Hyperbolic Geometry III" held in Da Nang, Vietnam, May 27-May 31, 2019, and workshop held at Quy Nhon University, Jun 3-June 7, 2019. The conference covers all aspects of quantum topology and its relation to hyperbolic geometry. It brings together participants from all over the world and provides an opportunity for researchers and students to share their latest ideas and to collaborate with each other. The conference is followed by a workshop, June 3-7, 2019, in Quy Nhon. Four of the speakers of the conference will each give a 5-lecture mini-course for graduate students and recent Ph.D's thereby contributing to the training and development of mathematical talent. Knot theory has long been an active branch of topology. There have been exciting new developments in the area of knot theory and 3-manifold topology in the last 35 years: the Jones polynomial, topological quantum field theories, gauge theory type invariants, etc. The new developments relate knot theory to other branches of mathematics such as number theory, Lie theory, statistical physics, etc, and employ tools far beyond the traditional ones from algebraic topology. The subject has significant applications and relations with biology, physics, combinatorics, algebra and the theory of quantum computation. This conference will drive and promote progress in all aspects of quantum topology and its relations to geometry. It will provide a venue for sharing new results in the closely related fields of quantum topology and 3-manifold geometry and topology; it will increase collaboration and communication among research experts globally; and it will introduce researchers, especially students and early career researchers, to important problems and areas of current research, especially problems lying at the interface of quantum and classical topology in three dimensions. The website of the conference is at http://vietnam2019.math.gatech.edu.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为美国研究人员参加2019年5月27日至5月31日在越南岘港举行的“量子拓扑和双曲几何III”国际会议,以及2019年6月3日至6月7日在桂仁大学举行的研讨会提供部分旅行支持。会议涵盖了量子拓扑的所有方面及其与双曲几何的关系。它汇集了来自世界各地的参与者,为研究人员和学生提供了一个分享他们最新想法和相互合作的机会。会议之后,将于2019年6月3日至7日在归仁举行一场研讨会。会议的四位主讲人将分别为研究生和刚毕业的博士们提供5节课的迷你课程,从而为培养和发展数学人才做出贡献。结理论一直是拓扑学的一个活跃分支。在过去的35年里,结理论和三流形拓扑领域有了令人兴奋的新发展:琼斯多项式、拓扑量子场论、规范论类型不变量等。新的发展将结理论与数学的其他分支,如数论、李论、统计物理等联系起来,并使用远远超出代数拓扑传统工具的工具。这门学科与生物学、物理学、组合学、代数和量子计算理论有着重要的应用和关系。这次会议将推动和促进量子拓扑及其与几何关系的各个方面的进展。它将提供一个场所,分享量子拓扑和三流形几何和拓扑等密切相关领域的新成果;它将加强全球研究专家之间的合作与交流;它将向研究人员,特别是学生和早期职业研究人员介绍当前研究的重要问题和领域,特别是在量子和经典拓扑的三维界面上的问题。会议的网址是http://vietnam2019.math.gatech.edu.This。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thang Le其他文献
Out-of-plane soil-structure interaction: A tapered shear wall on flexible semi-circular foundation excited by plane SH waves
- DOI:
10.1016/j.soildyn.2021.106671 - 发表时间:
2021-07-01 - 期刊:
- 影响因子:
- 作者:
Thang Le;Vincent W. Lee;Mihailo D. Trifunac - 通讯作者:
Mihailo D. Trifunac
Development of 3-DOF Force Feedback System Using Spherical Arm Mechanism and MR Brakes
使用球臂机构和磁流变制动器的三自由度力反馈系统的开发
- DOI:
10.18178/ijmerr.9.2.170-176 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Hung Q. Nguyen;Thang Le;D. N. Nguyen;Tuan D. Le;T. V. Lang;Thang Ngo - 通讯作者:
Thang Ngo
A unified quantum SO(3) invariant for rational homology 3-spheres
- DOI:
10.1007/s00222-010-0304-5 - 发表时间:
2010-12-22 - 期刊:
- 影响因子:3.600
- 作者:
Anna Beliakova;Irmgard Bühler;Thang Le - 通讯作者:
Thang Le
Search engine optimization poisoning: A cybersecurity threat analysis and mitigation strategies for small and medium-sized enterprises
搜索引擎优化中毒:中小企业网络安全威胁分析与缓解策略
- DOI:
10.1016/j.techsoc.2024.102470 - 发表时间:
2024 - 期刊:
- 影响因子:9.2
- 作者:
Tran Duc Le;Thang Le;Sylvestre Uwizeyemungu - 通讯作者:
Sylvestre Uwizeyemungu
A Study of Musculoskeletal Disease in Two Chronic Hemodialysis Populations and Its Impact on Quality of Life
两种慢性血液透析人群的肌肉骨骼疾病及其对生活质量的影响的研究
- DOI:
10.1097/rhu.0b013e3181c4c57f - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Sheherbano Mehdi;P. Prete;Mehrtash Hashimzadeh;Antony Hou;Thang Le;Gaurang R Shah;Brian S Andrews - 通讯作者:
Brian S Andrews
Thang Le的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thang Le', 18)}}的其他基金
The Jones Polynomial and Hyperbolic Geometry of Surfaces
曲面的琼斯多项式和双曲几何
- 批准号:
2203255 - 财政年份:2022
- 资助金额:
$ 4.35万 - 项目类别:
Continuing Grant
The Geometry and Topology of the Jones Polynomial
琼斯多项式的几何和拓扑
- 批准号:
1811114 - 财政年份:2018
- 资助金额:
$ 4.35万 - 项目类别:
Continuing Grant
Swiss Knots 2011: Knot Theory and Algebra
瑞士结 2011:结理论和代数
- 批准号:
1105703 - 财政年份:2011
- 资助金额:
$ 4.35万 - 项目类别:
Standard Grant
Invariants of Links and 3-manifolds
链接和 3 流形的不变量
- 批准号:
0437552 - 财政年份:2004
- 资助金额:
$ 4.35万 - 项目类别:
Standard Grant
Invariants of Links and 3-manifolds
链接和 3 流形的不变量
- 批准号:
0204158 - 财政年份:2002
- 资助金额:
$ 4.35万 - 项目类别:
Standard Grant
Invariants of Links and 3-Manifolds, Their Properties and Topology
链接和 3-流形的不变量、它们的性质和拓扑
- 批准号:
9971350 - 财政年份:1999
- 资助金额:
$ 4.35万 - 项目类别:
Standard Grant
Mathematical Sciences: Quantum and Finite Type Invariants of Links in 3-Manifolds, Quasicrystals
数学科学:3-流形、准晶体中链接的量子和有限型不变量
- 批准号:
9626404 - 财政年份:1996
- 资助金额:
$ 4.35万 - 项目类别:
Standard Grant
相似海外基金
Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
- 批准号:
2003892 - 财政年份:2020
- 资助金额:
$ 4.35万 - 项目类别:
Continuing Grant
RUI: Knots in Three-Dimensional Manifolds: Quantum Topology, Hyperbolic Geometry, and Applications
RUI:三维流形中的结:量子拓扑、双曲几何和应用
- 批准号:
1906323 - 财政年份:2019
- 资助金额:
$ 4.35万 - 项目类别:
Standard Grant
Quantum invariants and hyperbolic manifolds in three-dimensional topology
三维拓扑中的量子不变量和双曲流形
- 批准号:
DP160103085 - 财政年份:2016
- 资助金额:
$ 4.35万 - 项目类别:
Discovery Projects
Hyperbolic Geometry, Heegaard Surfaces, Foliation/Lamination Theory, and Smooth Four-Dimensional Topology
双曲几何、Heegaard 曲面、叶状/层状理论和平滑四维拓扑
- 批准号:
1607374 - 财政年份:2016
- 资助金额:
$ 4.35万 - 项目类别:
Continuing Grant
Classical and quantum hyperbolic geometry and topology
经典和量子双曲几何和拓扑
- 批准号:
1522850 - 财政年份:2015
- 资助金额:
$ 4.35万 - 项目类别:
Standard Grant
Quantum Topology and Hyperbolic Geometry
量子拓扑和双曲几何
- 批准号:
1251399 - 财政年份:2013
- 资助金额:
$ 4.35万 - 项目类别:
Standard Grant
Geometry and topology of curves and surfaces in closed hyperbolic manifolds
闭双曲流形中曲线和曲面的几何和拓扑
- 批准号:
1201463 - 财政年份:2012
- 资助金额:
$ 4.35万 - 项目类别:
Continuing Grant
Geometry and topology of hyperbolic 3-manifolds
双曲3流形的几何和拓扑
- 批准号:
1240329 - 财政年份:2011
- 资助金额:
$ 4.35万 - 项目类别:
Standard Grant
Hyperbolic geometry, topology and dynamics
双曲几何、拓扑和动力学
- 批准号:
1005973 - 财政年份:2010
- 资助金额:
$ 4.35万 - 项目类别:
Continuing Grant
Geometry and topology of hyperbolic 3-manifolds
双曲3流形的几何和拓扑
- 批准号:
1007175 - 财政年份:2010
- 资助金额:
$ 4.35万 - 项目类别:
Standard Grant