Surfaces and Geometry and Topology of Quantum Link Invariants
量子链接不变量的表面、几何和拓扑
基本信息
- 批准号:1907010
- 负责人:
- 金额:$ 10.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Knot theory studies knotted, closed loops in a three-dimensional space considered up to continuous transformations of the space. In mathematics, knots that cannot be transformed into one another without cutting and regluing the strings that form the loops are considered to be different from each other, or in other words, inequivalent. Key tools for distinguishing inequivalent knots are called knot invariants and these are essentially the properties of a knot that are preserved by continuous transformations of the space. In this project the PI will study the relationship between quantum knot invariants, a relatively less understood family, constructed from the ideas of quantum physics and mathematics. Central questions in quantum topology are broadly connected to the geometric topology of three-dimensional spaces, number-theoretic properties of polynomials assigned by quantum invariants, and the algebraic structures of quantum groups defining the theory. The project includes research plans for undergraduate and Master's students. The PI will also engage with "Girls Who Code" club meetings in service to the local community. The colored Jones polynomial is an important knot invariant that comes from the representation theory of quantum groups and lies at the heart of quantum topology, low-dimensional topology, and hyperbolic geometry. In this project the PI and her collaborators will expand the correspondence between a state sum defining the colored Jones polynomial and properly embedded surfaces in a link complement, by applying the techniques of classical three-manifold topology and normal surface theory. The next part is to prove a categorified version of the Strong Slope Conjecture for colored Khovanov homology, which is a categorification of the colored Jones polynomial. The PI will evaluate the potential for this framework to provide new perspectives on the relationship of Khovanov homology to knot Floer homology, another link invariant that has been extensively studied with deep connections to other fields. The project will further study the stability properties of Khovanov homology. These results will be used to explore the contact-geometric properties of the transverse invariant defined by Plamenevskaya.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纽结理论研究三维空间中的打结的闭合回路,认为是空间的连续变换。在数学中,如果不切断和重新粘合形成环的弦就不能相互转换的结被认为是彼此不同的,或者换句话说,是不等价的。区分不等价结的关键工具称为结不变量,这些基本上是通过空间的连续变换保持的结的属性。在这个项目中,PI将研究量子结不变量之间的关系,这是一个相对不太了解的家族,由量子物理学和数学的思想构建。量子拓扑学的中心问题与三维空间的几何拓扑、由量子不变量指定的多项式的数论性质以及定义理论的量子群的代数结构有着广泛的联系。该项目包括本科生和硕士生的研究计划。PI还将参与“编程女孩”俱乐部会议,为当地社区服务。 有色琼斯多项式是一个重要的纽结不变量,它来自量子群的表示理论,是量子拓扑、低维拓扑和双曲几何的核心。 在这个项目中,PI和她的合作者将通过应用经典的三流形拓扑和法向曲面理论的技术,扩展定义有色琼斯多项式的状态和与链路补中适当嵌入的曲面之间的对应关系。第二部分证明了色Khovanov同调的强斜率猜想的一个范畴化版本,它是色Jones多项式的一个范畴化。PI将评估该框架的潜力,以提供关于Khovanov同源性与结Floer同源性之间关系的新观点,这是另一个链接不变式,已被广泛研究,与其他领域有着深刻的联系。该项目将进一步研究Khovanov同源性的稳定性。这些结果将被用来探索由Plamenevskaya定义的横向不变量的接触几何特性。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The slope conjecture for Montesinos knots
- DOI:10.1142/s0129167x20500561
- 发表时间:2018-07
- 期刊:
- 影响因子:0.6
- 作者:S. Garoufalidis;C. Lee;Roland van der Veen
- 通讯作者:S. Garoufalidis;C. Lee;Roland van der Veen
Cancellations in the Degree of the Colored Jones Polynomial
- DOI:10.1007/s40306-021-00423-4
- 发表时间:2020-06
- 期刊:
- 影响因子:0.5
- 作者:C. Lee;Roland van der Veen
- 通讯作者:C. Lee;Roland van der Veen
On 3-braids and L-space knots
关于 3 辫子和 L 空间结
- DOI:10.1007/s10711-020-00594-8
- 发表时间:2021
- 期刊:
- 影响因子:0.5
- 作者:Lee, Christine Ruey;Vafaee, Faramarz
- 通讯作者:Vafaee, Faramarz
Stability and triviality of the transverse invariant from Khovanov homology
Khovanov 同调横向不变量的稳定性和平凡性
- DOI:10.1016/j.topol.2020.107146
- 发表时间:2020
- 期刊:
- 影响因子:0.6
- 作者:Hubbard, Diana;Lee, Christine Ruey
- 通讯作者:Lee, Christine Ruey
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christine Lee其他文献
Assessment of public and patient online comments in social media and food and drug administration archival data. A pilot qualitative analysis.
评估社交媒体和食品药品监督管理局档案数据中的公众和患者在线评论。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3.9
- 作者:
Christine Lee;Christopher O. St. Clair;Cdr Christine Merenda;Capt Richardae Araojo;S. Ray;Derrick Beasley;Radm Denise Hinton - 通讯作者:
Radm Denise Hinton
Maternal Opioid Abuse and Neonatal Abstinence Syndrome in the United States
美国孕产妇阿片类药物滥用和新生儿戒断综合症
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Elizabeth Armstrong;Deja Woolcock;Christine Lee;Morelia Torres Diaz - 通讯作者:
Morelia Torres Diaz
How Does Instant Messaging Affect Interaction Between the Genders ? By
即时通讯如何影响两性之间的互动?
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Christine Lee - 通讯作者:
Christine Lee
Is There Life? Is There Spirit? Debating Belief and Being a Good Christian in Watchman Nee’s ‘Little Flock’
倪柝声的《小羊群》里有没有生命?
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0.8
- 作者:
Christine Lee;Yujing Ma;Jianbo Huang - 通讯作者:
Jianbo Huang
9. Cyclin-Dependent kinase inhibitor as a potential novel therapeutic agent for pancreatic cancer
- DOI:
10.1097/01.pat.0000443699.20071.3b - 发表时间:
2014-01-01 - 期刊:
- 影响因子:
- 作者:
Angela Chou;Anthony J. Gill;Jian Kang;Christine Lee;Marcelo Sergio;Liz APGI;Adrienne L. Musgrove;Sean Morey;Andrew V. Grimmond;Marina Biankin; Pajic - 通讯作者:
Pajic
Christine Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christine Lee', 18)}}的其他基金
Surfaces and Geometry and Topology of Quantum Link Invariants
量子链接不变量的表面、几何和拓扑
- 批准号:
2244923 - 财政年份:2022
- 资助金额:
$ 10.97万 - 项目类别:
Continuing Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Geometry and topology of surfaces and graphs
曲面和图形的几何和拓扑
- 批准号:
2304920 - 财政年份:2023
- 资助金额:
$ 10.97万 - 项目类别:
Standard Grant
Surfaces and Geometry and Topology of Quantum Link Invariants
量子链接不变量的表面、几何和拓扑
- 批准号:
2244923 - 财政年份:2022
- 资助金额:
$ 10.97万 - 项目类别:
Continuing Grant
The Morse index, topology and geometry of branched constant mean curvature surfaces.
分支常平均曲率表面的莫尔斯指数、拓扑和几何。
- 批准号:
2758306 - 财政年份:2022
- 资助金额:
$ 10.97万 - 项目类别:
Studentship
Curves, Surfaces, and 3-Manifolds: Geometry, Topology, and Dynamics in the Mapping Class Group and Beyond
曲线、曲面和 3 流形:映射类组及其他领域中的几何、拓扑和动力学
- 批准号:
2203912 - 财政年份:2022
- 资助金额:
$ 10.97万 - 项目类别:
Standard Grant
Curves, Surfaces, and 3-Manifolds: Geometry, Topology, and Dynamics in the Mapping Class Group and Beyond
曲线、曲面和 3 流形:映射类组及其他领域中的几何、拓扑和动力学
- 批准号:
2231286 - 财政年份:2022
- 资助金额:
$ 10.97万 - 项目类别:
Standard Grant
CAREER: The Algebra, Geometry, and Topology of Infinite Surfaces
职业:无限曲面的代数、几何和拓扑
- 批准号:
2046889 - 财政年份:2021
- 资助金额:
$ 10.97万 - 项目类别:
Continuing Grant
Minimal Surfaces in Geometry and Topology
几何和拓扑中的最小曲面
- 批准号:
1906385 - 财政年份:2019
- 资助金额:
$ 10.97万 - 项目类别:
Continuing Grant
Hyperbolic Geometry, Heegaard Surfaces, Foliation/Lamination Theory, and Smooth Four-Dimensional Topology
双曲几何、Heegaard 曲面、叶状/层状理论和平滑四维拓扑
- 批准号:
1607374 - 财政年份:2016
- 资助金额:
$ 10.97万 - 项目类别:
Continuing Grant
Geometry and Topology of Polyhedral Surfaces
多面体表面的几何和拓扑
- 批准号:
1405106 - 财政年份:2014
- 资助金额:
$ 10.97万 - 项目类别:
Standard Grant
Geometry and topology of curves and surfaces in closed hyperbolic manifolds
闭双曲流形中曲线和曲面的几何和拓扑
- 批准号:
1201463 - 财政年份:2012
- 资助金额:
$ 10.97万 - 项目类别:
Continuing Grant