Geometrical Methods in Algebra and Topology
代数和拓扑中的几何方法
基本信息
- 批准号:0606002
- 负责人:
- 金额:$ 7.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-15 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI proposes to work on a series of projects that incorporate techniques from algebra, geometry, and topology, with a view to applications in all three of these fields. More precisely, the PI proposes to work on the following four circles of ideas:(1) Answering various classical questions in topology (such as the Novikov conjecture, the Borel conjecture, computation of the algebraic K-theory) under suitable geometric hypotheses on the spaces.(2) Working on problems related to the quasi-isometric classification of finitely generated groups.(3) Exploring the boundary between the space of CAT(-1) metrics and the space of negatively curved Riemannian metrics on a fixed manifold.(4) Studying the topology (cohomology, bounded cohomology, submanifolds) of locally symmetric spaces.These projects are intended to exhibit the interdependence of methods and results between the three fields of algebra (primarily group theory), geometry (negatively curved spaces) and topology (both geometric and algebraic).Groups are sets equipped with a "multiplication", and classically arose as symmetries of underlying geometric objects. Geometry is the study of properties of spaces equipped with some additional structure, usually of a metric nature (i.e. allowing one to measure distances in the space). In the field of topology, one forgets about the underlying distance, and only retain the notion of points in the space being "close together". While these three fields have always had some overlap, research from the last twenty years have led to an increasingly fertile exchange of ideas and applications amongst them. The PI's research is intended to further develop the links between these three fields.
PI建议开展一系列项目,将代数,几何和拓扑学的技术结合起来,以期在所有这三个领域中应用。 更确切地说,PI提出了以下四个思想圈:(1)在空间上适当的几何假设下,解决拓扑学中的各种经典问题(如诺维科夫猜想,波莱尔猜想,代数K理论的计算)。(2)研究与群的拟等距分类有关的问题。(3)探讨了固定流形上CAT(-1)度量空间与负曲黎曼度量空间的边界。(4)研究局部对称空间的拓扑(上同调,有界上同调,子流形)。这些项目旨在展示代数(主要是群论),几何(负弯曲空间)和拓扑(几何和代数)三个领域之间的方法和结果的相互依赖性。群是配备了“乘法”的集合,经典地作为基本几何对象的对称性而出现。 几何学是研究具有某种额外结构的空间的性质,通常具有度量性质(即允许人们测量空间中的距离)。 在拓扑学领域,人们忘记了潜在的距离,只保留了空间中的点“靠近”的概念。 虽然这三个领域总是有一些重叠,但过去二十年的研究已经导致它们之间的思想和应用的交流越来越丰富。 PI的研究旨在进一步发展这三个领域之间的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jean-Francois Lafont其他文献
Jean-Francois Lafont的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jean-Francois Lafont', 18)}}的其他基金
Geometry, Topology, and Dynamics of Spaces of Non-Positive Curvature
非正曲率空间的几何、拓扑和动力学
- 批准号:
1812028 - 财政年份:2018
- 资助金额:
$ 7.98万 - 项目类别:
Standard Grant
Conference: Topological methods in group theory, June 16-20, 2014
会议:群论中的拓扑方法,2014 年 6 月 16-20 日
- 批准号:
1441592 - 财政年份:2014
- 资助金额:
$ 7.98万 - 项目类别:
Standard Grant
Geometry, topology, and dynamics in negative curvature
负曲率中的几何、拓扑和动力学
- 批准号:
1016098 - 财政年份:2010
- 资助金额:
$ 7.98万 - 项目类别:
Standard Grant
Interactions between geometry and topology
几何与拓扑之间的相互作用
- 批准号:
0906483 - 财政年份:2009
- 资助金额:
$ 7.98万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Homotopical methods and cohomological supports in local algebra
局部代数中的同伦方法和上同调支持
- 批准号:
2302567 - 财政年份:2023
- 资助金额:
$ 7.98万 - 项目类别:
Standard Grant
Workshops in Spectral Methods in Algebra, Geometry, and Topology
代数、几何和拓扑谱方法研讨会
- 批准号:
2230159 - 财政年份:2022
- 资助金额:
$ 7.98万 - 项目类别:
Standard Grant
Nonstandard methods in algebra
代数中的非标准方法
- 批准号:
551931-2020 - 财政年份:2020
- 资助金额:
$ 7.98万 - 项目类别:
University Undergraduate Student Research Awards
Nonstandard methods in algebra
代数中的非标准方法
- 批准号:
551898-2020 - 财政年份:2020
- 资助金额:
$ 7.98万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Flag Algebra Methods
合作研究:标记代数方法
- 批准号:
1855653 - 财政年份:2019
- 资助金额:
$ 7.98万 - 项目类别:
Standard Grant
Collaborative Research: Flag Algebra Methods
合作研究:标记代数方法
- 批准号:
1855622 - 财政年份:2019
- 资助金额:
$ 7.98万 - 项目类别:
Standard Grant
Implicitization, Residual Intersections, and Differential Methods in Commutative Algebra
交换代数中的隐式化、残差交点和微分方法
- 批准号:
1802383 - 财政年份:2018
- 资助金额:
$ 7.98万 - 项目类别:
Continuing Grant
Computer algebra based methods for hypergeometric functions in some variables and its applications
基于计算机代数的某些变量超几何函数的方法及其应用
- 批准号:
17K05292 - 财政年份:2017
- 资助金额:
$ 7.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological methods in arithmetic and algebra
算术和代数中的拓扑方法
- 批准号:
1712470 - 财政年份:2017
- 资助金额:
$ 7.98万 - 项目类别:
Continuing Grant