Geometry and Topology in Samos

萨摩斯岛的几何和拓扑

基本信息

  • 批准号:
    1237653
  • 负责人:
  • 金额:
    $ 4.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

This is a proposal to provide funding for the conference "Geometry and Topology in Samos" to be held in Samos, Greece during June 11-16, 2012. The focus of this conference is the classification of manifolds, including both topological and geometric aspects. The central rigidity conjecture is the Farrell-Jones Conjecture, which generalizes both the Novikov and Borel rigidity conjectures. The conference will bring together researchers who use geometric methods to study topological problems with researchers who use topological methods to study geometric problems. Examples of the former are high-dimensional topologists and examples of the latter are geometric group theorists and differential geometers.Topology is often described as "rubber geometry": spaces are considered the same if one can be deformed into another via stretching and compressing (but without tearing or puncturing). A basic problem is to decide whether two spaces can be deformed into each other. The primary method for doing this is to develop ways to assign computable invariants to the space: if two spaces can be deformed into each other, then the associated invariants have to coincide. And conversely, if two spaces have different invariants, then they cannot be deformed into each other. An example of such invariants are the homotopy groups of a space. One can then ask whether the homotopy groups are good enough invariants to determine spaces. In other words, if if we have two spaces whose homotopy groups are the same, can they be deformed into each other? One of the central conjectures in topology is the Borel Conjecture, which predicts that for a certain class of spaces, the answer to the previous question is "yes". This problem has been central to high-dimensional topology, and work on it has involved sophisticated techniques from areas as diverse as algebra, geometry, and dynamics. The conference plans on bringing together international experts whose work touches upon the Borel conjecture (and related questions), with a view towards charting the course of future research on these topics.
这是一项为将于2012年6月11日至16日在希腊萨摩斯岛举行的“萨摩斯岛几何与拓扑”会议提供资金的提案。本次会议的重点是流形的分类,包括拓扑和几何方面。中心刚性猜想是法雷尔-琼斯猜想,它推广了诺维科夫和博雷尔刚性猜想。会议将汇集使用几何方法研究拓扑问题的研究人员与使用拓扑方法研究几何问题的研究人员。前者的例子是高维拓扑学家,后者的例子是几何群理论家和微分几何学家。拓扑学通常被描述为“橡胶几何”:如果一个空间可以通过拉伸和压缩变形为另一个空间(但没有撕裂或穿刺),那么空间被认为是相同的。一个基本问题是决定两个空间是否可以变形为彼此。实现这一点的主要方法是开发将可计算不变量分配给空间的方法:如果两个空间可以相互变形,那么相关的不变量必须重合。相反,如果两个空间具有不同的不变量,那么它们就不能变形为彼此。这种不变量的一个例子是空间的同伦群。然后,人们可以问同伦群是否是足够好的不变量来确定空间。换句话说,如果我们有两个同伦群相同的空间,它们能相互变形吗?拓扑学中的核心猜想之一是博雷尔猜想,它预测对于某一类空间,前一个问题的答案是“是”。这个问题一直是高维拓扑学的核心,它的工作涉及代数、几何和动力学等不同领域的复杂技术。会议计划汇集国际专家,他们的工作涉及博雷尔猜想(和相关问题),以期绘制这些主题的未来研究方向。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jean-Francois Lafont其他文献

Jean-Francois Lafont的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jean-Francois Lafont', 18)}}的其他基金

Around Non-Positive Curvature
围绕非正曲率
  • 批准号:
    2109683
  • 财政年份:
    2021
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Geometry, Topology, and Dynamics of Spaces of Non-Positive Curvature
非正曲率空间的几何、拓扑和动力学
  • 批准号:
    1812028
  • 财政年份:
    2018
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Aspects of non-positive curvature
非正曲率的方面
  • 批准号:
    1510640
  • 财政年份:
    2015
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Conference: Topological methods in group theory, June 16-20, 2014
会议:群论中的拓扑方法,2014 年 6 月 16-20 日
  • 批准号:
    1441592
  • 财政年份:
    2014
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Topology and non-positive curvature
拓扑和非正曲率
  • 批准号:
    1207782
  • 财政年份:
    2012
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Geometry, topology, and dynamics in negative curvature
负曲率中的几何、拓扑和动力学
  • 批准号:
    1016098
  • 财政年份:
    2010
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Interactions between geometry and topology
几何与拓扑之间的相互作用
  • 批准号:
    0906483
  • 财政年份:
    2009
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Geometrical Methods in Algebra and Topology
代数和拓扑中的几何方法
  • 批准号:
    0606002
  • 财政年份:
    2006
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Continuing Grant
Conference: Midwest Topology Seminar
会议:中西部拓扑研讨会
  • 批准号:
    2341204
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
  • 批准号:
    2300172
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Continuing Grant
Algebraic Structures in String Topology
弦拓扑中的代数结构
  • 批准号:
    2405405
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
  • 批准号:
    2340465
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Continuing Grant
CAREER: Elucidating the Impact of Side-Chain Topology on the Structure-Property Relationship in Bottlebrush Polymers
职业:阐明侧链拓扑对洗瓶刷聚合物结构-性能关系的影响
  • 批准号:
    2340664
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了