Conference: Topological methods in group theory, June 16-20, 2014
会议:群论中的拓扑方法,2014 年 6 月 16-20 日
基本信息
- 批准号:1441592
- 负责人:
- 金额:$ 3.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-01 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
"Topological Methods in Group Theory" is a conference to be held at Ohio State University, during the week of June 16th-20th, 2014. Group theory is an area of mathematics that was developed in the early 1800's. It provides the appropriate language for studying the collection of symmetries of an object, and is central to much of modern day mathematics. The central player in this theory is an algebraic structure called a group. In the early 1980's, the Russian geometer Misha Gromov realized that one could apply geometric techniques to study these algebraic structures. This remarkable insight led to the development of a new field - geometric group theory. This field is extremely active, with a lot of mathematicians both in the US and abroad. The conference is intended to bring together experts in the field to discuss the latest developments in the area. The conference will feature a large number of plenary talks, both from well-established leaders in the field, as well as from promising young researchers. Some of the topics that will be featured include:(i) groups of finite asymptotic dimension, (ii) amenability of groups,(iii) special cube complexes and applications, (iv)finiteness properties of groups, (v) Thompson's group and analogues, (vi) Coxeter and Artin groups, (vii) L^2-cohomology techniques, (viii) Cannon-Thurston style maps and applications. In addition to the plenary talks, we plan on having shorter (20mn) talks run in parallel sessions, giving younger mathematicians and graduate students the opportunity to broadly disseminate their results. For more information, please check https://people.math.osu.edu/lafont.1/TopMethodsConf.html
“拓扑方法在群论”是一个会议将在俄亥俄州州立大学举行,在6月16日至20日的一周,2014.群论是19世纪早期发展起来的一个数学领域。它为研究对象的对称性集合提供了适当的语言,并且是现代数学的核心。这个理论的核心是一个叫做群的代数结构。在20世纪80年代初,俄罗斯几何学家Misha Gromov意识到可以应用几何技术来研究这些代数结构。这一非凡的洞察力导致了一个新领域的发展-几何群论。这一领域非常活跃,在美国和国外都有很多数学家。这次会议旨在汇集该领域的专家,讨论该领域的最新发展。会议将有大量的全体会议,既有来自该领域的知名领导者,也有来自有前途的年轻研究人员。一些专题将包括:(i)有限渐近维数的群体,(ii)群体的顺从性,(iii)特殊的立方体复形和应用,(iv)群体的有限性,(v)汤普森群和类似物,(vi)考克斯特和阿廷群,(vii)L^2-上同调技巧,(viii)坎农-瑟斯顿风格的映射和应用。除了全体会议的会谈,我们计划有较短的(20 mn)会谈在平行会议上运行,让年轻的数学家和研究生有机会广泛传播他们的成果。欲了解更多信息,请访问https://people.math.osu.edu/lafont.1/TopMethodsConf.html
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jean-Francois Lafont其他文献
Jean-Francois Lafont的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jean-Francois Lafont', 18)}}的其他基金
Geometry, Topology, and Dynamics of Spaces of Non-Positive Curvature
非正曲率空间的几何、拓扑和动力学
- 批准号:
1812028 - 财政年份:2018
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Geometry, topology, and dynamics in negative curvature
负曲率中的几何、拓扑和动力学
- 批准号:
1016098 - 财政年份:2010
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Interactions between geometry and topology
几何与拓扑之间的相互作用
- 批准号:
0906483 - 财政年份:2009
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Geometrical Methods in Algebra and Topology
代数和拓扑中的几何方法
- 批准号:
0606002 - 财政年份:2006
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
- 批准号:
2415445 - 财政年份:2024
- 资助金额:
$ 3.2万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
- 批准号:
2327892 - 财政年份:2024
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
- 批准号:
2327893 - 财政年份:2024
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Topological-based numerical methods for real-world problems
针对现实世界问题的基于拓扑的数值方法
- 批准号:
2882199 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Studentship
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
- 批准号:
2313262 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
- 批准号:
10884028 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Topological Methods for Learning to Steer Self-Organised Growth
学习引导自组织增长的拓扑方法
- 批准号:
EP/X017753/1 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Research Grant
DMS/NIGMS 1: Topological Dynamics Models of Protein Function
DMS/NIGMS 1:蛋白质功能的拓扑动力学模型
- 批准号:
10794436 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
- 批准号:
10885376 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Phase transitions, criticality and non-trivial topological states in non-equilibrium driven-dissipative systems using analytical methods and tensor ne
使用分析方法和张量 ne 的非平衡驱动耗散系统中的相变、临界性和非平凡拓扑态
- 批准号:
2731618 - 财政年份:2022
- 资助金额:
$ 3.2万 - 项目类别:
Studentship














{{item.name}}会员




