Optimization and Control of Charge Transport in Nanostructured Organic/Inorganic Composites

纳米结构有机/无机复合材料中电荷传输的优化和控制

基本信息

  • 批准号:
    0606054
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-15 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

Technical: The goal of this project is to achieve greater understanding and the ability to create systematic surface modification strategies to improve charge transport between organics and inorganics. Organic/inorganic composites represent a new class of electronic materials that exhibit novel properties that can be modified for specific applications through design and control of constituent structural and electronic functionality. The organic/inorganic interface is critical to the performance of such composites, however. The lack of understanding of the role of interfacial microstructure on charge transport currently limits the performance of these materials. The approach focuses on the first layer of organic molecules, strategies for creating beneficial layers, and for characterizing and optimizing the interaction of the organic layer with the inorganic surface. Research will be directed at developing surface molecular layers on semiconducting oxides, with special emphasis on ZnO/polymer blends. Emphasis is on materials science of the interface, and how it changes as interfacial molecular layers are changed. The overall aim of this work is on achieving new knowledge and understanding that can be applied to a broader class of oxide interfaces and organic constituents, aiding future development of organic/inorganic composites. Optical, structural and electronic characterization techniques will be applied to develop an understanding of the properties of the specific functionalized surfaces under study, and to define a systematic approach to uncovering the interfacial electronic properties of organic/inorganic hybrids.Non-Technical: The project addresses basic research issues in a topical area of materials science having high technological relevance. The research will contribute basic materials science knowledge at a fundamental level to new understanding and capabilities for potential next generation electronic/photonic devices. Organic/inorganic composites have the potential for creating electronic materials with entirely new functionality in energy efficiency, biological, medical, and environmental applications. This project will accelerate the development of these materials by providing fundamental understanding of one of the key issues limiting performance. The proposed project directly integrates research with education. Students and faculty will work with an existing outreach program at the Colorado School of Mines (CSM) aimed at Denver middle schools with large populations of under-represented groups. Modules which explore connections between microstructure and materials properties will be introduced into the middle schools. Assistance and guidance in developing the modules will be provided by colleagues at the IBM research division, and approaches developed during the project will be included in a summer middle school science recertification program taught by one of the Co-PIs. The project will also include unique opportunities for graduate and undergraduate training in a highly interdisciplinary field. The students will work on a daily basis in an integrated team with their advisors, collaborators at the National Renewable Energy Laboratory (NREL) which is located in close proximity to CSM, and with scientists at Los Alamos. Involvement of undergraduate students in research, a focus on communication skills, and developing skills for work in a team environment are integral parts of the project. This project is co-funded by the DMR Solid State Chemistry and DMR Electronic Materials programs.
技术:这个项目的目标是更好地理解和创造系统的表面修饰策略,以改善有机物和无机物之间的电荷传输。有机/无机复合材料代表了一类新的电子材料,它们具有新的性质,可以通过设计和控制组成结构和电子功能来针对特定的应用进行修改。然而,有机/无机界面对此类复合材料的性能至关重要。目前对界面微结构在电荷传输中的作用缺乏了解,限制了这些材料的性能。该方法侧重于有机分子的第一层,创建有益层的策略,以及表征和优化有机层与无机表面的相互作用。研究的重点将是在半导体氧化物上开发表面分子层,特别是氧化锌/聚合物混合物。重点是界面的材料科学,以及它如何随着界面分子层的变化而变化。这项工作的总体目标是获得新的知识和理解,这些知识和理解可以应用于更广泛的氧化物界面和有机成分,有助于有机/无机复合材料的未来发展。将应用光学、结构和电子表征技术来发展对所研究的特定功能化表面的性质的理解,并定义一种系统的方法来揭示有机/无机杂化材料的界面电子性质。非技术性:该项目解决具有高度技术相关性的材料科学主题领域的基础研究问题。这项研究将在基础水平上为潜在的下一代电子/光子设备的新理解和能力贡献基本材料科学知识。有机/无机复合材料有可能创造出在能源效率、生物、医疗和环境应用方面具有全新功能的电子材料。该项目将通过提供对限制性能的关键问题之一的基本了解来加速这些材料的开发。拟议的项目直接将研究与教育结合在一起。学生和教职员工将与科罗拉多矿业学院(CSM)现有的一项外展计划合作,该计划旨在针对丹佛拥有大量代表不足群体的中学。探索微观结构和材料性能之间关系的模块将被引入中学。IBM研究部的同事将在开发模块方面提供帮助和指导,在项目期间开发的方法将包括在其中一名合作绩效指标教授的暑期中学科学重新认证计划中。该项目还将包括在一个高度跨学科的领域进行研究生和本科生培训的独特机会。学生们将与他们的导师、位于CSM附近的国家可再生能源实验室(NREL)的合作者以及洛斯阿拉莫斯的科学家们每天在一个综合团队中工作。让本科生参与研究,注重沟通技能,培养团队合作技能是该项目不可或缺的一部分。该项目由DMR固态化学和DMR电子材料计划共同资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Reuben Collins其他文献

Reuben Collins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Reuben Collins', 18)}}的其他基金

Molecular Monolayer Optimization of the Interface in Nanostructured Organic/Inorganic Composites
纳米结构有机/无机复合材料界面的分子单层优化
  • 批准号:
    0907409
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Scanning Probe Microscopy Studies of Polycrystalline and Nanocrystalline Semiconductors
多晶和纳米晶半导体的扫描探针显微镜研究
  • 批准号:
    0103945
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Near-Field Scanning Optical Microscopy Study of Polycrystalline Semiconductors
多晶半导体的近场扫描光学显微镜研究
  • 批准号:
    9704780
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Sensitive control of elastic wave by cooperative use of charge and magnetic orders
电荷和磁阶协同使用弹性波灵敏控制
  • 批准号:
    23K03291
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Charge control and creation of quantum network devices of group-IV vacancy centers in diamond
金刚石IV族空位中心的电荷控制和量子网络器件的创建
  • 批准号:
    22H04962
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
CAREER: Control of Intramolecular Long-Range Charge-Transfer Emission
职业:分子内长程电荷转移发射的控制
  • 批准号:
    2144787
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Measuring and Manipulating how Proteins Control their Net Charge: Redox Enzymes, Crowded Enzymes, and Aggregated Proteins.
测量和操纵蛋白质如何控制其净电荷:氧化还原酶、拥挤酶和聚集蛋白质。
  • 批准号:
    2203441
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Study of transient quantum phases of matter via light-control of dynamical charge correlations
通过动态电荷关联的光控制研究物质的瞬态量子相
  • 批准号:
    571425-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Potential-responsive Luminescence Switching Based on Layer Charge Control in 2D Multiple Oxides
基于二维多重氧化物层电荷控制的电势响应发光开关
  • 批准号:
    22K05264
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
In-cycle control for homogenous charge compression ignition combustion
均质充量压燃燃烧的循环控制
  • 批准号:
    566818-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Homogeneous charge compression ignition combustion control utilizing field programmable gate array based in-cycle control
利用基于现场可编程门阵列的循环控制的均质充量压缩点火燃烧控制
  • 批准号:
    534959-2019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Using Spacer Molecular Structure to Control Energetics, Stability, Charge-Carrier Transport, and Photovoltaic Performance in 2D Organic Metal Halide Perovskites
利用间隔分子结构控制二维有机金属卤化物钙钛矿的能量、稳定性、载流子传输和光伏性能
  • 批准号:
    2102257
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Creation of cell response control method by electric charge -Cure viral infection and cancer with charged hydrogel
创造电荷控制细胞反应的方法 - 用带电水凝胶治愈病毒感染和癌症
  • 批准号:
    21K19878
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了