Molecular Monolayer Optimization of the Interface in Nanostructured Organic/Inorganic Composites
纳米结构有机/无机复合材料界面的分子单层优化
基本信息
- 批准号:0907409
- 负责人:
- 金额:$ 46.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technical: The goal of this project is to develop systematic surface modification strategies to improve the interrelated issues of morphology, energetics, and charge transport across organic/inorganic interfaces. The approach is based on difunctional molecular layers. One end is designed for surface attachment while the other end imparts a special chemical or electronic characteristic to the modified interface. Research will be directed toward developing surface molecular layers on semiconducting oxides, with a special emphasis on ZnO/polymer blends. The overall focus of the work is on identifying design rules that could be applied to a broader class of oxide interfaces and organic constituents, which would simplify future development of organic/inorganic composites. Advanced optical, structural, surface, and electronic characterization techniques will be applied to these systems to develop an understanding of the properties of the specific functionalized surfaces under study, and define a systematic approach to uncovering the interfacial morphological and electronic properties of organic/inorganic hybrid materials. Non-Technical: The project addresses basic research issues in a topical area of materials science having high technological relevance. The research will contribute basic materials science knowledge at a fundamental level to new understanding and capabilities for potential next generation electronic/photonic devices. Organic/inorganic composites have the potential for creating electronic materials with new functionality in energy efficiency, biological, medical, and environmental applications. This project will accelerate the development of these materials by providing fundamental understanding of one of the key issues limiting performance. The proposed project directly integrates research with education. Students and faculty will work with an existing outreach program at the Colorado School of Mines (CSM) aimed at Denver elementary and middle schools with large populations of underrepresented groups. Modules, which connect basic science concepts to the impact that advanced materials are having on the world, will be introduced into these schools. Approaches developed during the project will also be included in a teacher recertification program taught by one of the Co-PIs. The project includes significant undergraduate research involvement through summer REU opportunities and an international student exchange with NTNU (Norwegian University of Science and Technology). All of the students will work on a daily basis as part of an integrated team with their advisors, collaborators at the National Renewable Energy Laboratory (NREL) which is located in close proximity to CSM, with scientists at NTNU, and with colleagues at the University of Arizona. A focus on diversity, communication skills, and developing skills for work in a team environment are all integral parts of the proposed program. This project is co-funded by the DMR Solid State and Materials Chemistry program, and the DMR Electronic and Photonic Materials program.
技术支持:该项目的目标是开发系统的表面改性策略,以改善有机/无机界面的形态,能量学和电荷传输的相互关联的问题。该方法是基于双功能分子层。一端设计用于表面附着,而另一端赋予改性界面特殊的化学或电子特性。研究将针对开发半导体氧化物表面分子层,特别强调ZnO/聚合物共混物。工作的总体重点是确定设计规则,可以适用于更广泛的一类氧化物界面和有机成分,这将简化未来的发展有机/无机复合材料。先进的光学,结构,表面和电子表征技术将被应用到这些系统中,以发展研究中的特定功能化表面的性能的理解,并定义一个系统的方法来揭示有机/无机杂化材料的界面形态和电子性能。非技术性:该项目涉及具有高度技术相关性的材料科学专题领域的基础研究问题。该研究将在基础层面上为潜在的下一代电子/光子器件的新理解和能力贡献基础材料科学知识。有机/无机复合材料具有创造电子材料的潜力,在能源效率,生物,医疗和环境应用中具有新的功能。该项目将通过提供对限制性能的关键问题之一的基本理解来加速这些材料的开发。拟议的项目直接将研究与教育结合起来。学生和教师将与科罗拉多矿业学院(CSM)现有的外展计划合作,该计划针对丹佛小学和中学,这些学校有大量代表性不足的群体。将把基本科学概念与先进材料对世界的影响联系起来的模块将被引入这些学校。在项目期间开发的方法也将包括在一个教师再认证计划由一个共同的PI教授。该项目包括通过夏季REU机会和与NTNU(挪威科技大学)的国际学生交流来参与重要的本科生研究。所有的学生将在日常工作作为一个综合团队的一部分,与他们的顾问,在国家可再生能源实验室(NREL)的合作者,这是位于靠近CSM,与科学家在NTNU,并与同事在亚利桑那大学。注重多样性,沟通技巧,并在团队环境中发展工作技能都是拟议计划的组成部分。该项目由DMR固态和材料化学计划以及DMR电子和光子材料计划共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reuben Collins其他文献
Reuben Collins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reuben Collins', 18)}}的其他基金
Optimization and Control of Charge Transport in Nanostructured Organic/Inorganic Composites
纳米结构有机/无机复合材料中电荷传输的优化和控制
- 批准号:
0606054 - 财政年份:2006
- 资助金额:
$ 46.48万 - 项目类别:
Continuing Grant
Scanning Probe Microscopy Studies of Polycrystalline and Nanocrystalline Semiconductors
多晶和纳米晶半导体的扫描探针显微镜研究
- 批准号:
0103945 - 财政年份:2001
- 资助金额:
$ 46.48万 - 项目类别:
Continuing Grant
Near-Field Scanning Optical Microscopy Study of Polycrystalline Semiconductors
多晶半导体的近场扫描光学显微镜研究
- 批准号:
9704780 - 财政年份:1997
- 资助金额:
$ 46.48万 - 项目类别:
Continuing Grant
相似海外基金
Observing, Creating and Addressing Topological Spin Textures in a Monolayer XY Magnet
观察、创建和解决单层 XY 磁体中的拓扑自旋纹理
- 批准号:
EP/Y023250/1 - 财政年份:2024
- 资助金额:
$ 46.48万 - 项目类别:
Research Grant
Development of Metal Nanoparticle Catalysts Decorated by Inorganic Monolayer Nanosheets and Its Application for Green Chemical Processes
无机单层纳米片修饰金属纳米粒子催化剂的研制及其在绿色化工过程中的应用
- 批准号:
23H02005 - 财政年份:2023
- 资助金额:
$ 46.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Observing, Creating and Addressing Topological Spin Textures in a Monolayer XY Magnet
观察、创建和解决单层 XY 磁体中的拓扑自旋纹理
- 批准号:
2883379 - 财政年份:2023
- 资助金额:
$ 46.48万 - 项目类别:
Studentship
Realization of kagome-lattice monolayer quantum materials by topotactic reactions of ultrathin films
超薄膜拓扑反应实现戈薇晶格单层量子材料
- 批准号:
23H01830 - 财政年份:2023
- 资助金额:
$ 46.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Three-dimensional Confocal Microscopy Visualization and AFM-IR Chemical Mapping of Lung Surfactant Monolayer Collapse Morphologies
肺表面活性剂单层塌陷形态的三维共焦显微镜可视化和 AFM-IR 化学图谱
- 批准号:
10751972 - 财政年份:2023
- 资助金额:
$ 46.48万 - 项目类别:
Development of stable intermediates for handling by hydrogenation of monolayer germanene
开发用于单层锗烯氢化处理的稳定中间体
- 批准号:
23H01811 - 财政年份:2023
- 资助金额:
$ 46.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Emergent oscillation and ordered structure of active epithelial monolayer induced by topographic landscape
地形景观诱导的活性上皮单层的突现振荡和有序结构
- 批准号:
23H01144 - 财政年份:2023
- 资助金额:
$ 46.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exciton dynamics in monolayer materials revealed by direct observation of dark exciton states
通过直接观察暗激子态揭示单层材料中的激子动力学
- 批准号:
22K20354 - 财政年份:2022
- 资助金额:
$ 46.48万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Where 2D meets ML: Defects and Reaction Kinetics at the atomic monolayer limit
2D 与 ML 的结合:原子单层极限下的缺陷和反应动力学
- 批准号:
2749169 - 财政年份:2022
- 资助金额:
$ 46.48万 - 项目类别:
Studentship
CAREER: Probing exciton-exciton correlations and phase transitions for spin-polarized excitons in monolayer transition metal dichalcogenides
职业:探索单层过渡金属二硫化物中自旋极化激子的激子-激子相关性和相变
- 批准号:
2142703 - 财政年份:2022
- 资助金额:
$ 46.48万 - 项目类别:
Continuing Grant