The Ab-Initio Prediction of Crystal Structure: Combining Data Mining Ideas with Quantum Mechanics

晶体结构的从头算预测:数据挖掘思想与量子力学的结合

基本信息

  • 批准号:
    0606276
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-01 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:This award supports computational and theoretical research that aims to develop a rigorous formalism to capture "knowledge" from past experimental and computed data, and use it to rapidly guide accurate quantum mechanical energy or free energy methods towards the most stable structure in binary and ternary metallic alloys and oxides. In a departure from traditional computational approaches, the PI will merge ideas from data-mining to extract knowledge from the large body of existing crystal structure information with the predictive power of quantum mechanical calculations. The PI will pursue a probabilistic approach. The probability of particular structure to appear in a new alloy is expanded in terms of correlations between structures at different compositions and between structures and elements. To capture structure correlations present in nature, the PI will data mine some of the largest databases available for metallic alloys and oxide compounds and construct a maximum entropy representation of it. This will enable predictions for many alloys for which currently little or no characterization is present. The resulting structure prediction tool and all in-house generated data will be made available to the research community as a web-based structure predictor so that these new methods can be most efficiently disseminated.The new developments gained from this research, and the ab-initio database that will be created, will be integrated with the freely available (on the web) electronic course on Computational Materials Science the PI teaches. This contributes to the cyberinfrastructure of the materials research community.NON-TECHNICAL SUMMARY:This award supports computational and theoretical research that aims to develop a rigorous formalism to capture "knowledge" from past experimental and computed data, and use it to rapidly guide accurate computations that aim to predict how atoms will organize themselves in materials. The PI will focus on classes of alloys and oxide materials. Crystal structure plays a fundamental and widely applicable role in materials science. Many relevant physical properties of inorganic materials are directly tied to, and sometimes prohibited by, the underlying symmetry of the way atoms arrange themselves in a crystal. In computational materials science where one tries to predict properties of materials before they are synthesized, the prediction of structure is a key but a missing cornerstone of materials design by computer. This work contributes to efforts to develop computational methods that can predict the way atoms will arrange themselves in a crystal.This work contributes to the cyberinfrastructure of the materials research community. It involves the novel application of data mining to materials computations and the use of the resulting integration to solve complex materials problems. The successful completion of this research project will lead to an approach that can determine the stable arrangement of atoms in a material with a high confidence level, and to the creation of a database available to the public that contains the results of computations for a large number of crystal structures and alloys that can be queried by theorists, computational materials researchers, experimentalists, students, and materials educators.
技术概述:该奖项支持计算和理论研究,旨在开发一种严格的形式主义,从过去的实验和计算数据中获取“知识”,并使用它快速指导精确的量子力学能或自由能方法,以实现二元和三元金属合金和氧化物中最稳定的结构。与传统的计算方法不同,PI将融合数据挖掘的思想,从现有的大量晶体结构信息中提取知识,并利用量子力学计算的预测能力。PI将采用概率方法。根据不同成分的结构之间以及结构与元素之间的相关性,扩大了新合金中出现特定结构的可能性。为了捕捉自然界中存在的结构相关性,PI将对一些可用于金属合金和氧化物化合物的最大数据库进行数据挖掘,并构建其最大熵表示。这将使许多合金的预测,目前很少或没有表征存在。由此产生的结构预测工具和所有内部生成的数据将作为基于网络的结构预测器提供给研究界,以便这些新方法可以最有效地传播。从这项研究中获得的新进展,以及将创建的ab-initio数据库,将与PI教授的免费(在网络上)计算材料科学电子课程相结合。这有助于材料研究界的网络基础设施。非技术总结:该奖项支持计算和理论研究,旨在开发一种严格的形式主义,从过去的实验和计算数据中获取“知识”,并使用它来快速指导精确的计算,旨在预测原子如何在材料中组织自己。PI将专注于合金和氧化物材料的分类。晶体结构在材料科学中起着基础和广泛应用的作用。无机材料的许多相关物理性质与晶体中原子排列方式的潜在对称性直接相关,有时甚至被这种对称性所禁止。在计算材料科学中,人们试图在材料合成之前预测材料的性能,结构预测是计算机材料设计的关键,但却缺少基石。这项工作有助于开发计算方法来预测原子在晶体中的排列方式。这项工作有助于材料研究界的网络基础设施。它涉及数据挖掘在材料计算中的新应用,并使用由此产生的集成来解决复杂的材料问题。该研究项目的成功完成将导致一种方法,可以确定具有高可信度的材料中原子的稳定排列,并创建一个可供公众使用的数据库,其中包含大量晶体结构和合金的计算结果,可供理论家,计算材料研究人员,实验家,学生和材料教育者查询。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gerbrand Ceder其他文献

Oxydes à cations désordonnés pour des batteries au lithium rechargeables et autres applications
电池和锂充电电池中的氧化物和其他应用
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gerbrand Ceder;Jinhyuk Lee;Dong
  • 通讯作者:
    Dong
Integrated analysis of X-ray diffraction patterns and pair distribution functions for machine-learned phase identification
用于机器学习相识别的 X 射线衍射图和对分布函数的集成分析
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    N. Szymanski;Sean Fu;Ellen Persson;Gerbrand Ceder
  • 通讯作者:
    Gerbrand Ceder
An <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> -norm regularized regression model for construction of robust cluster expansions in multicom
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>ℓ</mml:mi>< mml:mn>0</mml:mn></mml:msub><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>2</mml:mn></mml: msub></mml:mrow></mml:数学>
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Peichen Zhong;Tina Chen;Luis Barroso;Fengyu Xie;Gerbrand Ceder
  • 通讯作者:
    Gerbrand Ceder
Systematic softening in universal machine learning interatomic potentials
通用机器学习原子间势中的系统软化
  • DOI:
    10.1038/s41524-024-01500-6
  • 发表时间:
    2025-01-10
  • 期刊:
  • 影响因子:
    11.900
  • 作者:
    Bowen Deng;Yunyeong Choi;Peichen Zhong;Janosh Riebesell;Shashwat Anand;Zhuohan Li;KyuJung Jun;Kristin A. Persson;Gerbrand Ceder
  • 通讯作者:
    Gerbrand Ceder
Predictive modeling and design rules for solid electrolytes
  • DOI:
    10.1557/mrs.2018.210
  • 发表时间:
    2018-10-10
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Gerbrand Ceder;Shyue Ping Ong;Yan Wang
  • 通讯作者:
    Yan Wang

Gerbrand Ceder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gerbrand Ceder', 18)}}的其他基金

DMREF: Collaborative Research: The Synthesis Genome: Data Mining for Synthesis of New Materials
DMREF:协作研究:合成基因组:新材料合成的数据挖掘
  • 批准号:
    1922372
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SI2-SSI: Collaborative Research: A Computational Materials Data and Design Environment
SI2-SSI:协作研究:计算材料数据和设计环境
  • 批准号:
    1147503
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CDI Type I: Collaborative Research: Integration of relational learning with ab-initio methods for prediction of material properties
CDI I 型:协作研究:将关系学习与从头开始的方法相结合,用于预测材料特性
  • 批准号:
    0941043
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Mathematical Modeling of Rechargeable Batteries
FRG:协作研究:可充电电池的数学建模
  • 批准号:
    0853488
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ITR: Data Mining of Quantum Mechanical Calculations for Predicting Materials Structure
ITR:用于预测材料结构的量子力学计算数据挖掘
  • 批准号:
    0312537
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Structural Evolution of Layered Intercalculation Materials for Rechargeable Lithium Batteries: First Principles Modeling and Experiments
美法合作研究:可充电锂电池层状互算材料的结构演化:第一原理建模和实验
  • 批准号:
    0003799
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Configurational Defect Arrangements in Multi- Component Oxides
职业:多组分氧化物中的构型缺陷排列
  • 批准号:
    9501856
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

微溶剂效应对 SN2 反应动力学的影响:直接 ab initio 轨线研究
  • 批准号:
    21573052
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目

相似海外基金

Inter molecular potential prediction by ab initio molecular orbital method for refrigerant property calculation
从头算分子轨道法预测分子间势用于制冷剂特性计算
  • 批准号:
    22K03946
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing statistical, topological and geometrical techniques for ab-initio protein structure prediction
开发用于从头算蛋白质结构预测的统计、拓扑和几何技术
  • 批准号:
    2671188
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Towards Ab Initio Prediction of Superconducting Properties
迈向超导特性的从头开始预测
  • 批准号:
    2035518
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Ab initio Prediction of the 163Ho Electron Capture Spectrum
163Ho 电子捕获谱的从头预测
  • 批准号:
    400329440
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Units
Cotranslational folding in ab initio protein structure prediction and applications in de novo design;
从头开始蛋白质结构预测中的共翻译折叠及其在从头设计中的应用;
  • 批准号:
    2105285
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Studentship
Prediction and characterization of novel Earth-forming minerals using advanced ab initio simulations
使用先进的从头算模拟对新型地球形成矿物进行预测和表征
  • 批准号:
    1723160
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development of efficient ab initio methods for the accurate prediction of EPR parameters in large molecules
开发有效的从头算方法,用于准确预测大分子中的 EPR 参数
  • 批准号:
    221163479
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Prediction and characterization of novel Earth-forming minerals using advanced ab initio simulations
使用先进的从头算模拟对新型地球形成矿物进行预测和表征
  • 批准号:
    1114313
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
DEVELOPMENT AND APPLICATION OF A HIERARCHICAL PROTOCOL FOR AB INITIO PREDICTION
从头预测的分层协议的开发和应用
  • 批准号:
    8364243
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
CDI Type I: Collaborative Research: Integration of relational learning with ab-initio methods for prediction of material properties
CDI I 型:协作研究:将关系学习与从头开始的方法相结合,用于预测材料特性
  • 批准号:
    0941533
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了