FRG: Collaborative Research: Mathematical Modeling of Rechargeable Batteries

FRG:协作研究:可充电电池的数学建模

基本信息

  • 批准号:
    0853488
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The project will develop a new framework for mathematical modeling of rechargeable batteries, taking into account statistical thermodynamics, concentrated-solution reaction rates, elasticity, crystal anisotropy, stochastic effects, and composite microstructures. Existing engineering models simply fit the open circuit voltage empirically and postulate dynamics by linear diffusion of intercalated lithium, but recent experiments contradict this picture for phase-separating materials. In contrast, the team will develop robust mathematical models to predict the voltage and current response over the full range of operating conditions. The basis for modeling at the single-crystal level will be Cahn-Hilliard partial differential equations with nonlinear boundary conditions, expressing chemical-potential dependent reaction reactions. The goal will be to provide the first mathematical description of emerging high-rate materials, where phase transformations occur via nonlinear intercalation waves, coupling anisotropic diffusion and electrochemical reactions. This effort will also raise basic mathematical questions in linear and nonlinear stability, degenerate wave solutions, and numerical methods.In spite of extensive engineering over the past few decades, the performance of rechargeable batteries has improved only incrementally. Power density (charge/discharge rate per unit mass) and cycle life must still improve drastically for applications such as electric vehicles and renewable energy storage, and this will require a better fundamental understanding of how ions are inserted and extracted from porous electrodes. To meet this need, the project creates a Focused Research Group from mathematics, chemical engineering, and materials science to develop a new theoretical paradigm for Li-ion batteries. The group will guide the engineering of new ultrafast Li-ion batteries, capable of charging and discharging in seconds rather than hours, while opening fruitful directions for applied mathematics. The group will train graduate and undergraduate students and postdocs, organize annual workshops, and develop a course on mathematical modeling of electrochemical energy systems.
该奖项根据 2009 年美国复苏和再投资法案(公法 111-5)提供资助。该项目将开发可充电电池数学建模的新框架,同时考虑统计热力学、浓溶液反应速率、弹性、晶体各向异性、随机效应和复合微观结构。现有的工程模型只是根据经验拟合开路电压,并通过嵌入锂的线性扩散来假设动力学,但最近的实验与相分离材料的这一情况相矛盾。相比之下,该团队将开发强大的数学模型来预测整个工作条件范围内的电压和电流响应。单晶水平建模的基础是具有非线性边界条件的 Cahn-Hilliard 偏微分方程,表达化学势相关的反应反应。目标是提供新兴高倍率材料的第一个数学描述,其中相变通过非线性插层波、耦合各向异性扩散和电化学反应发生。这项工作还将提出线性和非线性稳定性、简并波解和数值方法方面的基本数学问题。尽管在过去几十年里进行了广泛的工程设计,可充电电池的性能只是逐步提高。对于电动汽车和可再生能源存储等应用,功率密度(每单位质量的充电/放电速率)和循环寿命仍必须大幅提高,这将需要更好地了解离子如何从多孔电极插入和提取。为了满足这一需求,该项目创建了一个由数学、化学工程和材料科学组成的重点研究小组,以开发锂离子电池的新理论范式。该小组将指导新型超快锂离子电池的工程设计,这种电池能够在几秒钟而不是几小时内充电和放电,同时为应用数学开辟富有成效的方向。该小组将培训研究生、本科生和博士后,组织年度研讨会,并开发电化学能源系统数学建模课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gerbrand Ceder其他文献

Oxydes à cations désordonnés pour des batteries au lithium rechargeables et autres applications
电池和锂充电电池中的氧化物和其他应用
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gerbrand Ceder;Jinhyuk Lee;Dong
  • 通讯作者:
    Dong
Integrated analysis of X-ray diffraction patterns and pair distribution functions for machine-learned phase identification
用于机器学习相识别的 X 射线衍射图和对分布函数的集成分析
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    N. Szymanski;Sean Fu;Ellen Persson;Gerbrand Ceder
  • 通讯作者:
    Gerbrand Ceder
An <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> -norm regularized regression model for construction of robust cluster expansions in multicom
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>ℓ</mml:mi>< mml:mn>0</mml:mn></mml:msub><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>2</mml:mn></mml: msub></mml:mrow></mml:数学>
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Peichen Zhong;Tina Chen;Luis Barroso;Fengyu Xie;Gerbrand Ceder
  • 通讯作者:
    Gerbrand Ceder
Systematic softening in universal machine learning interatomic potentials
通用机器学习原子间势中的系统软化
  • DOI:
    10.1038/s41524-024-01500-6
  • 发表时间:
    2025-01-10
  • 期刊:
  • 影响因子:
    11.900
  • 作者:
    Bowen Deng;Yunyeong Choi;Peichen Zhong;Janosh Riebesell;Shashwat Anand;Zhuohan Li;KyuJung Jun;Kristin A. Persson;Gerbrand Ceder
  • 通讯作者:
    Gerbrand Ceder
Predictive modeling and design rules for solid electrolytes
  • DOI:
    10.1557/mrs.2018.210
  • 发表时间:
    2018-10-10
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Gerbrand Ceder;Shyue Ping Ong;Yan Wang
  • 通讯作者:
    Yan Wang

Gerbrand Ceder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gerbrand Ceder', 18)}}的其他基金

DMREF: Collaborative Research: The Synthesis Genome: Data Mining for Synthesis of New Materials
DMREF:协作研究:合成基因组:新材料合成的数据挖掘
  • 批准号:
    1922372
  • 财政年份:
    2019
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
SI2-SSI: Collaborative Research: A Computational Materials Data and Design Environment
SI2-SSI:协作研究:计算材料数据和设计环境
  • 批准号:
    1147503
  • 财政年份:
    2012
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CDI Type I: Collaborative Research: Integration of relational learning with ab-initio methods for prediction of material properties
CDI I 型:协作研究:将关系学习与从头开始的方法相结合,用于预测材料特性
  • 批准号:
    0941043
  • 财政年份:
    2010
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
The Ab-Initio Prediction of Crystal Structure: Combining Data Mining Ideas with Quantum Mechanics
晶体结构的从头算预测:数据挖掘思想与量子力学的结合
  • 批准号:
    0606276
  • 财政年份:
    2006
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
ITR: Data Mining of Quantum Mechanical Calculations for Predicting Materials Structure
ITR:用于预测材料结构的量子力学计算数据挖掘
  • 批准号:
    0312537
  • 财政年份:
    2003
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Structural Evolution of Layered Intercalculation Materials for Rechargeable Lithium Batteries: First Principles Modeling and Experiments
美法合作研究:可充电锂电池层状互算材料的结构演化:第一原理建模和实验
  • 批准号:
    0003799
  • 财政年份:
    2001
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: Configurational Defect Arrangements in Multi- Component Oxides
职业:多组分氧化物中的构型缺陷排列
  • 批准号:
    9501856
  • 财政年份:
    1995
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了