DMREF: Collaborative Research: The Synthesis Genome: Data Mining for Synthesis of New Materials
DMREF:协作研究:合成基因组:新材料合成的数据挖掘
基本信息
- 批准号:1922372
- 负责人:
- 金额:$ 56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Successes in accelerated materials design, made possible in part through the Materials Genome Initiative, have shifted the bottleneck in materials development towards the synthesis of novel compounds. Existing databases do not contain information about the synthesis recipes necessary to make compounds that are found to have promising properties, designed through computational methods. As a result, much of the momentum and efficiency gained in the design process becomes gated by trial-and-error synthesis techniques. This delay in going from promising materials concept to validation, optimization, and scale-up is a significant burden to the commercialization of novel materials. This Designing Materials to Revolutionize and Engineer our Future (DMREF) research will build predictive tools for synthesis so that the development time for chemical compounds with interesting properties can be synthesized in a matter of days, rather than months or years. The research activities include automatically extracting information from the published literature and patents on how solid inorganic materials have been made in the past by using natural language processing techniques. After this text extraction the project will generate a "cookbook" of materials synthesis recipes. This cookbook can be mined through machine learning approaches for suggestions on how to make new materials by looking for patterns and similarities among previously made materials. The project outcome will be a data set of materials synthesis methods, to be made available to the community. Another key project outcome is to use machine learning to predict novel or optimized recipes for materials. These predictions will be accompanied by experimental confirmation for a class of materials used in catalysis called zeolites. The major objective of the outreach component of this research is to enable the use of the database by non-experts. This will be accomplished through both online tutorials and in person workshops. The online tutorials will teach the basic knowledge required to utilize the online tools and functionalities while the workshops will be addressed to students and researchers who want to make use of the database itself. The approach to automatic extraction of information in the literature will be semi-supervised from a machine learning perspective. Unsupervised methods, including word embeddings that capture the context of words within scientific corpus, will be used. Then downstream supervised methods will be used to classify words by their type and their relationship to other words. This forms the basis of the recipe database. The extracted information will then be mined using machine learning tools from the materials informatics community. Because the recipe classification (described subsequently) leverages expertise from the NLP perspective and the target material classification leverages expertise from the materials perspective, there is significant leverage to be had from this interdisciplinary approach, a partnership not previously pursued to further materials design. This approach builds on established synthesis knowledge, and combines it with modern data extraction, materials informatics, text mining and machine learning techniques, and high-throughput ab-initio thermochemical data availability. The integration of these different fields will provide a direct route towards more rational design of synthesis methods and thereby significantly accelerate the deployment and testing of new materials concepts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
加速材料设计的成功,部分通过材料基因组计划成为可能,已经将材料开发的瓶颈转移到新化合物的合成上。现有的数据库不包含有关合成配方的信息,这些配方是通过计算方法设计的,用于制造被发现具有有前途特性的化合物。因此,在设计过程中获得的大部分动力和效率都是通过试错合成技术来控制的。这种从有前途的材料概念到验证、优化和放大的延迟是新材料商业化的重大负担。这项设计材料以革命和工程我们的未来(DMREF)研究将建立合成的预测工具,以便具有有趣特性的化合物的开发时间可以在几天内合成,而不是几个月或几年。研究活动包括使用自然语言处理技术从已发表的文献和专利中自动提取有关固体无机材料过去是如何制造的信息。在此文本提取后,该项目将生成一个材料合成食谱的“食谱”。这本食谱可以通过机器学习方法来挖掘,通过寻找以前制作的材料之间的模式和相似性来获得关于如何制作新材料的建议。该项目的成果将是一套材料合成方法的数据集,供社区使用。另一个关键的项目成果是使用机器学习来预测新的或优化的材料配方。这些预测将伴随着实验证实一类材料用于催化称为沸石。这项研究的外联部分的主要目标是使非专家能够使用数据库。 这将通过在线教程和亲自研讨会来完成。 在线教程将教授使用在线工具和功能所需的基本知识,而讲习班将面向希望使用数据库本身的学生和研究人员。从机器学习的角度来看,文献中自动提取信息的方法将是半监督的。将使用无监督方法,包括捕获科学语料库中单词上下文的单词嵌入。然后,下游监督方法将被用于根据词的类型及其与其他词的关系对词进行分类。这构成了配方数据库的基础。然后将使用材料信息学社区的机器学习工具挖掘提取的信息。由于配方分类(随后描述)从NLP的角度利用专业知识,目标材料分类从材料的角度利用专业知识,因此这种跨学科方法具有重要的杠杆作用,这种伙伴关系以前没有追求进一步的材料设计。这种方法建立在已建立的综合知识的基础上,并将其与现代数据提取,材料信息学,文本挖掘和机器学习技术以及高通量从头算热化学数据的可用性相结合。这些不同领域的整合将为更合理地设计合成方法提供直接途径,从而显著加快新材料概念的部署和测试。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Similarity of Precursors in Solid-State Synthesis as Text-Mined from Scientific Literature
- DOI:10.1021/acs.chemmater.0c02553
- 发表时间:2020-09-22
- 期刊:
- 影响因子:8.6
- 作者:He, Tanjin;Sun, Wenhao;Ceder, Gerbrand
- 通讯作者:Ceder, Gerbrand
ULSA: unified language of synthesis actions for the representation of inorganic synthesis protocols
ULSA:用于表示无机合成方案的合成操作的统一语言
- DOI:10.1039/d1dd00034a
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wang, Zheren;Cruse, Kevin;Fei, Yuxing;Chia, Ann;Zeng, Yan;Huo, Haoyan;He, Tanjin;Deng, Bowen;Kononova, Olga;Ceder, Gerbrand
- 通讯作者:Ceder, Gerbrand
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gerbrand Ceder其他文献
Oxydes à cations désordonnés pour des batteries au lithium rechargeables et autres applications
电池和锂充电电池中的氧化物和其他应用
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Gerbrand Ceder;Jinhyuk Lee;Dong - 通讯作者:
Dong
Integrated analysis of X-ray diffraction patterns and pair distribution functions for machine-learned phase identification
用于机器学习相识别的 X 射线衍射图和对分布函数的集成分析
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:9.7
- 作者:
N. Szymanski;Sean Fu;Ellen Persson;Gerbrand Ceder - 通讯作者:
Gerbrand Ceder
An
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>
-norm regularized regression model for construction of robust cluster expansions in multicom
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>ℓ</mml:mi>< mml:mn>0</mml:mn></mml:msub><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>2</mml:mn></mml: msub></mml:mrow></mml:数学>
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:3.7
- 作者:
Peichen Zhong;Tina Chen;Luis Barroso;Fengyu Xie;Gerbrand Ceder - 通讯作者:
Gerbrand Ceder
Systematic softening in universal machine learning interatomic potentials
通用机器学习原子间势中的系统软化
- DOI:
10.1038/s41524-024-01500-6 - 发表时间:
2025-01-10 - 期刊:
- 影响因子:11.900
- 作者:
Bowen Deng;Yunyeong Choi;Peichen Zhong;Janosh Riebesell;Shashwat Anand;Zhuohan Li;KyuJung Jun;Kristin A. Persson;Gerbrand Ceder - 通讯作者:
Gerbrand Ceder
Predictive modeling and design rules for solid electrolytes
- DOI:
10.1557/mrs.2018.210 - 发表时间:
2018-10-10 - 期刊:
- 影响因子:4.900
- 作者:
Gerbrand Ceder;Shyue Ping Ong;Yan Wang - 通讯作者:
Yan Wang
Gerbrand Ceder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gerbrand Ceder', 18)}}的其他基金
SI2-SSI: Collaborative Research: A Computational Materials Data and Design Environment
SI2-SSI:协作研究:计算材料数据和设计环境
- 批准号:
1147503 - 财政年份:2012
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
CDI Type I: Collaborative Research: Integration of relational learning with ab-initio methods for prediction of material properties
CDI I 型:协作研究:将关系学习与从头开始的方法相结合,用于预测材料特性
- 批准号:
0941043 - 财政年份:2010
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Mathematical Modeling of Rechargeable Batteries
FRG:协作研究:可充电电池的数学建模
- 批准号:
0853488 - 财政年份:2009
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
The Ab-Initio Prediction of Crystal Structure: Combining Data Mining Ideas with Quantum Mechanics
晶体结构的从头算预测:数据挖掘思想与量子力学的结合
- 批准号:
0606276 - 财政年份:2006
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
ITR: Data Mining of Quantum Mechanical Calculations for Predicting Materials Structure
ITR:用于预测材料结构的量子力学计算数据挖掘
- 批准号:
0312537 - 财政年份:2003
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Structural Evolution of Layered Intercalculation Materials for Rechargeable Lithium Batteries: First Principles Modeling and Experiments
美法合作研究:可充电锂电池层状互算材料的结构演化:第一原理建模和实验
- 批准号:
0003799 - 财政年份:2001
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
CAREER: Configurational Defect Arrangements in Multi- Component Oxides
职业:多组分氧化物中的构型缺陷排列
- 批准号:
9501856 - 财政年份:1995
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
- 批准号:
2323936 - 财政年份:2023
- 资助金额:
$ 56万 - 项目类别:
Standard Grant