GOALI: Electrical Degradation in Thin Layer BaTiO3: Microchemical Origins and Microstructural Control
GOALI:薄层 BaTiO3 中的电降解:微化学起源和微观结构控制
基本信息
- 批准号:0606352
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL DESCRIPTION:Capacitors are in numerous electronic systems, ranging in application from medical, telecommunications, computational, consumer electronics, transportation, and military. In development of modern day capacitors, long-term reliability is often limited by electrochemical processes within the capacitive materials that ultimately lead to material and device failure. With continued miniaturization of devices and electronic components, reliability becomes a more critical issue in maintaining yields and insuring electrical system longevity. This research aims to understand the statistical nature of material failure in capacitor materials using unique characterization techniques to identify local defects within a device that ultimately evolve to limit the lifetime of the component. This research program is collaborative endeavor between Kemet Corporation (Greenville, SC), who has vast experience in producing commercial multilayer ceramic capacitors and Penn State University who has an established history of research in capacitor materials and the analytical tools necessary to understand the physical origins of material degradation. Beyond providing a new experimental methodology for assessing and understanding degradation and failure, the program will foster greater university-industrial interaction and provide students with a dual industrial/academic perspective on a scientifically rich and technologically significant materials science research program. TECHNICAL DESCRIPTION:This research program focuses on material degradation phenomena in BaTiO3-based multilayer ceramic capacitors, with the specific aim of understanding scaling laws for degradation as the dielectric layers are reduced to submicron thickness. Generally, it is agreed that the loss of insulation resistance (increase in leakage current) in BaTiO3 is associated with the migration of oxygen vacancies under a DC bias. The kinetics of this degradation process, however, are a function of many processing variables, including dielectric and electrode formulations, layer thicknesses and lay-down, processing temperatures and PO2, all of which affect the microstructure and distribution of dopants and point defects within the material. Moreover, for each of these processes there are significant scaling issues encountered as the dielectric layer thickness is reduced below 1 mm, which need to be quantitatively and statistically evaluated and scientifically understood. Utilizing electron probe techniques that are sensitive to voltage and current imaging, we identify locations of high leakage current in capacitive devices. Applying these methods in-situ within a focused ion beam system, samples are extracted from the weak points of capacitors for more detailed electrical and structural analysis. A statistical approach is applied and modeled to better understand the onset of total leakage of a device from its microscopic origins. This research is timely, given the fact that within the next ten years, multilayer capacitors based on barium titanate will reduce to thicknesses of the order of 0.2 micrometers, and with layers approaching the many hundreds.
非技术描述:电容器在许多电子系统中,应用范围从医疗,电信,计算,消费电子,运输和军事。 在现代电容器的开发中,长期可靠性通常受到电容材料内的电化学过程的限制,这些电化学过程最终导致材料和器件失效。随着设备和电子元件的不断小型化,可靠性在保持产量和确保电气系统寿命方面变得更加关键。本研究旨在了解电容器材料中材料失效的统计性质,使用独特的表征技术来识别器件中的局部缺陷,这些缺陷最终会限制组件的寿命。该研究计划是Kemet Corporation(Greenville,SC)和Penn州立大学之间的合作奋进,Kemet Corporation在生产商用多层陶瓷电容器方面拥有丰富的经验,Penn State University在电容器材料研究方面拥有悠久的历史,并拥有了解材料降解的物理起源所需的分析工具。 除了提供评估和理解退化和故障的新实验方法外,该计划还将促进更大的大学-工业互动,并为学生提供科学丰富和技术重要的材料科学研究计划的双重工业/学术视角。 技术描述:该研究计划的重点是钛酸钡基多层陶瓷电容器中的材料退化现象,其具体目的是了解介电层减少到亚微米厚度时退化的比例定律。 一般认为,BaTiO 3的绝缘电阻损失(漏电流增加)与直流偏压下氧空位的迁移有关。然而,这种降解过程的动力学是许多加工变量的函数,包括电介质和电极配方、层厚度和沉积、加工温度和PO 2,所有这些都会影响材料内掺杂剂和点缺陷的微观结构和分布。 此外,对于这些工艺中的每一个,当电介质层厚度减小到1 mm以下时,都会遇到显著的缩放问题,这需要进行定量和统计评估并科学地理解。利用对电压和电流成像敏感的电子探针技术,我们确定了电容器件中高漏电流的位置。 在聚焦离子束系统中原位应用这些方法,从电容器的弱点提取样品,以进行更详细的电气和结构分析。 应用统计方法并建模,以更好地了解器械从其微观来源开始的总泄漏。 这项研究是及时的,因为在未来十年内,基于钛酸钡的多层电容器的厚度将减少到0.2微米量级,并且层接近数百层。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clive Randall其他文献
Clive Randall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clive Randall', 18)}}的其他基金
A Convergence Study to Determine to the Role of Pressure Solution Creep Mechanisms in Driving Cold Sintering in Functional Ceramics
确定压溶蠕变机制在驱动功能陶瓷冷烧结中的作用的收敛性研究
- 批准号:
2202525 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Ultrasonic Assisted Cold Sintering: Kinetics of Densification and Grain Growth Study in Binary Oxide Ceramics
超声波辅助冷烧结:二元氧化物陶瓷致密化动力学和晶粒生长研究
- 批准号:
1728634 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
Non-Stoichiometric Ferroelectrics and their Associated Thermoelectric Properties
非化学计量铁电体及其相关热电性能
- 批准号:
1206518 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Continuing Grant
Planning Grant: I/UCRC for Dielectrics and Piezoelectrics (CDP)
规划补助金:I/UCRC 电介质和压电材料 (CDP)
- 批准号:
1238334 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Expansion and Maintenance of a Newly Formed I/UCRC Multi-University Center for Dielectric Studies
新成立的 I/UCRC 多大学介电研究中心的扩建和维护
- 批准号:
0628817 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant
Formation of an I/UCRC Multi-University Center for Dielectric Studies
成立 I/UCRC 多大学介电研究中心
- 批准号:
0120812 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Electrical degradation in complex environmental factors
复杂环境因素下的电退化
- 批准号:
23H01405 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Electrical degradation diagnosis of aerospace carbon fibre composites
航空航天碳纤维复合材料电退化诊断
- 批准号:
2886016 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Multiscale modeling of degradation of electrical insulating material
电绝缘材料降解的多尺度建模
- 批准号:
20H02140 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Clarification of degradation mechanism of electrical insulation system based on feature value analysis in partial discharge waveform
基于局部放电波形特征值分析阐明电气绝缘系统劣化机理
- 批准号:
20K04416 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of mechanical factors in degradation of electrical performance of organic semiconductor devices under mechanical deformation
阐明机械变形下有机半导体器件电性能退化的机械因素
- 批准号:
19K04093 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
GOALI: Adaptive Degradation-Based Prognosis with Application to Vehicular Electrical Systems
GOALI:基于自适应退化的预测在车辆电气系统中的应用
- 批准号:
1200639 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Electrical degradation in high-k dielectrics based devices: A computational study
基于高 k 电介质的器件的电退化:计算研究
- 批准号:
0700172 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Study on Degradation Diagnosis for Power Cable Using Wavelet Analysis of Pressure Wave Produced by Electrical Tree Propagation
电树传播压力波小波分析电力电缆老化诊断研究
- 批准号:
15560246 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Enhanced Dense Nonaqueous Phase Liquid (DNAPL) Degradation by Thermophilic Bioaugmentation of Electrical Resistance Heating
SBIR 第一阶段:通过电阻加热的嗜热生物强化增强致密非水相液体 (DNAPL) 降解
- 批准号:
0319742 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
An International Collaboration on Electrical Discharge Reactors for the Degradation of Organic Dyes
放电反应器降解有机染料的国际合作
- 批准号:
0086351 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant