Qualitative Behavior of Solutions for Systems of Conservation Laws With Additional Physical Effects
具有附加物理效应的守恒定律系统解的定性行为
基本信息
- 批准号:0606853
- 负责人:
- 金额:$ 10.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2007-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project deals with some nonlinear partial differential equations of conservation laws with some important additional physical effects appearing as source terms, such as relaxation and electric fields. The first part of the project is to study the global existence and structure of multi-dimensional shock fronts solutions for the hyperbolic conservation laws with lower order dissipations, such as relaxation. The second part is to study the nonlinear stability of planar transonic shocks for the Euler-Poisson equations of semiconductors, both in one-dimensional and multi-dimensional cases. This research aims at understanding the global structure and behavior of solutions with shock waves for the nonlinear systems of conservation laws with some additional physical effects, both in one space dimension and several space dimensions, elucidating the influence of the additional physical effects such as relaxations and electric fields on the structure and behavior of shock waves, developing new ideas and techniques for the study of nonlinear partial differential equations, and providing new insight to the numerical computation of shock waves for the nonlinear systems of conservation laws with additional physical effects.The systems of nonlinear partial differential equations to be studied in this project arise in many branches of applied sciences and engineering, such as gas dynamics, shallow water waves, semiconductor devices and biophysics. These equations provide basic models of importance in a wide range of applications. For those equations, shock waves are very important wave patterns. The study of shock waves is very challenging because they are highly nonlinear. This is particular so in several space dimensions and when the additional important physical effects are taken into account. This research will deepen the understanding of nonlinear waves, particularly for shock waves. Also, new theories and techniques will be developed for applications. Moreover, the theories and methods to be developed in this research will enhance basic understanding of many important nonlinear wave phenomena and their applications to applied sciences and engineering.
本研究计画系针对某些非线性守恒律偏微分方程,其中包含一些重要的附加物理效应,例如松弛与电场。第一部分是研究具有低阶耗散(如松弛)的双曲型守恒律方程的多维激波阵面解的整体存在性和结构。第二部分是研究半导体Euler-Poisson方程平面跨音速激波的非线性稳定性,包括一维和多维情形。 本研究的目的是在一维和多维空间中理解具有某些附加物理效应的非线性守恒律方程组的激波解的整体结构和行为,阐明诸如弛豫和电场等附加物理效应对激波结构和行为的影响,为非线性偏微分方程的研究发展新的思想和技术,本文所研究的非线性偏微分方程组是一个新的非线性方程组,它的数值解是一个非线性方程组的数值解。这一课题出现在应用科学和工程的许多分支中,如气体动力学、浅水波、半导体器件和生物物理学。这些方程在广泛的应用中提供了重要的基本模型。对于这些方程,激波是非常重要的波型。冲击波的研究是非常具有挑战性的,因为它们是高度非线性的。这在若干空间维度中尤其如此,并且当考虑到额外的重要物理效应时。这一研究将加深对非线性波,特别是冲击波的理解。此外,新的理论和技术将被开发用于应用。此外,在这项研究中发展的理论和方法将加强对许多重要的非线性波动现象及其在应用科学和工程中的应用的基本理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tao Luo其他文献
A New Performance Enhancement Algorithm for Space-time Block Coding in OFDM Systems
正交频分复用系统中空时分组编码的新性能增强算法
- DOI:
- 发表时间:
2004-09 - 期刊:
- 影响因子:0
- 作者:
Kai Xu*;Tao Luo;Changchuan Yin;Guangxin Yue - 通讯作者:
Guangxin Yue
Characteristics of Aerosol Extinction Hygroscopic Growth in the Typical Coastal City of Qingdao, China
典型沿海城市青岛气溶胶吸湿增长特征
- DOI:
10.3390/rs14246288 - 发表时间:
2022-12 - 期刊:
- 影响因子:5
- 作者:
Nana Liu;Shengcheng Cui;Tao Luo;Shunping Chen;Kaixuan Yang;Xuebin Ma;Gang Sun;Xuebin Li - 通讯作者:
Xuebin Li
Successful outcomes of intracytoplasmic sperm injection–embryo transfer using ejaculated spermatozoa from two Chinese asthenoteratozoospermic brothers with a compound heterozygous FSIP2 mutation
使用两名具有复合杂合子 FSIP2 突变的中国软弱精子兄弟的射精精子进行胞浆内单精子注射-胚胎移植的成功结果。
- DOI:
10.1111/and.14351 - 发表时间:
2021 - 期刊:
- 影响因子:2.4
- 作者:
Yuan Yuan;Wenqing Xu;Ziyi Chen;Ying Chen;Li Zhang;Liping Zheng;Tao Luo;Houyang Chen - 通讯作者:
Houyang Chen
A memberane-Inpired Algorithm to Solve the Shipping Route Optimization Problem
求解航线优化问题的基于成员法的算法
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Tao Luo;Xiaoli Qiang;Yajun She;Zongyuan Yang - 通讯作者:
Zongyuan Yang
Surface Enriching Promotes Decomposition of Benzene from Air
表面富集促进空气中苯的分解
- DOI:
10.1039/d1cy02296b - 发表时间:
2022 - 期刊:
- 影响因子:5
- 作者:
Tao Luo;Zhijian Wang;Xuhui Wei;Xiang Huang;Shuli Bai;Jiazang Chen - 通讯作者:
Jiazang Chen
Tao Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tao Luo', 18)}}的其他基金
Qualitative Behavior of Solutions for Systems of Conservation Laws With Additional Physical Effects
具有附加物理效应的守恒定律系统解的定性行为
- 批准号:
0839864 - 财政年份:2008
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
Qualitative Behavior of Solutions for Systems of Conservation Laws With Additional Physical Effects
具有附加物理效应的守恒定律系统解的定性行为
- 批准号:
0742834 - 财政年份:2007
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Charge Patterning and Molecular Interactions in the Phase Behavior of Polyelectrolyte/Particle Solutions
聚电解质/颗粒溶液相行为中的电荷模式和分子相互作用
- 批准号:
2347031 - 财政年份:2024
- 资助金额:
$ 10.55万 - 项目类别:
Continuing Grant
Large time behavior of solutions to nonlinear hyperbolic and dispersive equations with weakly dissipative structure
弱耗散结构非线性双曲和色散方程解的大时间行为
- 批准号:
22KJ2801 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Behavior of nonstationary solutions to reaction-diffusion systems possessing continua of stationary solutions
具有连续稳定解的反应扩散系统的非平稳解的行为
- 批准号:
23K03176 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the behavior of solutions to nonlinear Schrodinger equations of non-conserved models
非守恒模型非线性薛定谔方程解的行为研究
- 批准号:
23K03168 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on behavior of solutions and the well-posedness for the nonlinear dispersive system in plasma physics
等离子体物理中非线性色散系统解的行为及适定性研究
- 批准号:
23KJ2028 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Order-induced heterogeneities in the deformation behavior of FCC concentrated solid solutions
职业:FCC 浓固溶体变形行为中的有序诱导异质性
- 批准号:
2144451 - 财政年份:2022
- 资助金额:
$ 10.55万 - 项目类别:
Continuing Grant
Asymptotic behavior of global in time solutions to the viscous conservation laws
粘性守恒定律全局时间解的渐近行为
- 批准号:
22K03371 - 财政年份:2022
- 资助金额:
$ 10.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mobility-as-a-Service (MaaS): Analyzing activity-travel behavior and its application to on-demand multi-modal mobility solutions in cities
出行即服务 (MaaS):分析活动出行行为及其在城市按需多式联运解决方案中的应用
- 批准号:
2749818 - 财政年份:2020
- 资助金额:
$ 10.55万 - 项目类别:
Studentship
shear thickening behavior in wormlike micelle solutions studied by novel shear-SANS
通过新型剪切-SANS 研究蠕虫状胶束溶液中的剪切增稠行为
- 批准号:
19K05413 - 财政年份:2019
- 资助金额:
$ 10.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Higher Order Numerical Methods and Dynamical Behavior of Solutions for Mathematical Models
数学模型解的高阶数值方法和动力学行为研究
- 批准号:
19K03613 - 财政年份:2019
- 资助金额:
$ 10.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)