The Topology of Hyperbolic 3-Manifolds
双曲3流形的拓扑
基本信息
- 批准号:0608567
- 负责人:
- 金额:$ 15.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-15 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Culler and Shalen are continuing their study of the topological structure of hyperbolic 3-manifolds. The context for this work is the on-going unification of the geometric and topological theories of3-manifolds. The results can be viewed in terms of the theorem, which is a consequence of work of Gromov, Thurston and Jorgensen, that the set of volumes of closed hyperbolic 3-manifolds is a well-ordered set of real numbers. The proposed research aims to understand the topological properties of the 3-manifolds with volume less than a given threshold value. Alternatively, the goal is to determine the volume which corresponds to the ordinal at which a given topological property first appears. The techniques used range from very classical topological methods, such as a refined version of the tower construction used in proving the Loop Theorem, to the most recent developments, including the proof of the Marden Tameness conjecture and Perelman's estimates on the change of volume under Ricci flow. Interesting connections with group theory and combinatorial topology are also involved.The spaces which are being studied in this research project, namely 3-dimensional manifolds, serve as mathematical models of the spatial aspect of a possible physical universe. New connections between modern physics and the mathematical theory of 3-manifolds are being discovered at a rapidly accelerating pace. The mathematical theory has traditionally been divided into topology and geometry, where geometry focuses on quantities which can be measured, such as lengths, angles, areas or volumes, and topology focuses on global properties that are preserved even when the geometric features are distorted. However, these two aspects of the subject are closely related, andthere are many examples of results which relate geometric properties and topological properties. Recent mathematical achievements, beginning with the Mostow Rigidity theorem and continuing up to the recent proofs of Marden's Tameness Conjecture and Thurston's Geometrization Conjecture, are leading toward a unification of the geometrical and topological theories of 3-manifolds. The research supported by this grant concentrates on hyperbolic manifolds, a class which includes the vast majority of 3-manifolds with a homogeneous geometric structure, and aims to understand in a quantitative sense how topological complexity depends on the geometrical volume of themanifold.
Culler和Shalen正在继续研究双曲3-流形的拓扑结构。这项工作的背景是正在进行的统一的几何和拓扑理论的三维流形。结果可以被视为在定理,这是一个后果的工作格罗莫夫,瑟斯顿和乔根森,集的体积封闭双曲3流形是一个良好的秩序集的真实的号码。该研究旨在了解体积小于给定阈值的三维流形的拓扑性质。或者,目标是确定对应于给定拓扑性质首次出现的序数的体积。所使用的技术范围从非常经典的拓扑方法,如改进版本的塔建设中使用的证明环路定理,以最新的发展,包括证明的马尔登驯服猜想和佩雷尔曼的估计变化量下里奇流。有趣的连接与群论和组合拓扑学也涉及。空间正在研究的这个研究项目,即三维流形,作为一个可能的物理宇宙的空间方面的数学模型。 现代物理学和三维流形数学理论之间的新联系正在以快速加速的速度被发现。 数学理论传统上分为拓扑学和几何学,其中几何学侧重于可以测量的量,例如长度,角度,面积或体积,而拓扑学侧重于即使几何特征被扭曲也能保持的全局属性。然而,这两个方面的主题是密切相关的,有许多例子的结果,涉及几何性质和拓扑性质。 最近的数学成就,开始与莫斯托刚性定理,并继续到最近的证明马尔登的驯服猜想和瑟斯顿的几何化猜想,导致统一的几何和拓扑理论的三维流形。 这项资助支持的研究集中在双曲流形上,这类流形包括绝大多数具有齐次几何结构的3-流形,旨在定量地了解拓扑复杂性如何取决于流形的几何体积。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc Culler其他文献
Singular surfaces, mod 2 homology, and hyperbolic volume, II
- DOI:
10.1016/j.topol.2010.10.008 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:
- 作者:
Marc Culler;Peter B. Shalen - 通讯作者:
Peter B. Shalen
Marc Culler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc Culler', 18)}}的其他基金
Topology, geometry and arithmetic of hyperbolic 3-manifolds
双曲3流形的拓扑、几何和算术
- 批准号:
0906155 - 财政年份:2009
- 资助金额:
$ 15.09万 - 项目类别:
Continuing Grant
Journees Peter Shalen - A Conference on 3-Dimensional Topology and Its Role in Mathematics
Journees Peter Shalen - 3 维拓扑及其在数学中的作用的会议
- 批准号:
0603270 - 财政年份:2006
- 资助金额:
$ 15.09万 - 项目类别:
Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
- 批准号:
9872025 - 财政年份:1998
- 资助金额:
$ 15.09万 - 项目类别:
Standard Grant
相似海外基金
Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
- 批准号:
2003892 - 财政年份:2020
- 资助金额:
$ 15.09万 - 项目类别:
Continuing Grant
RUI: Knots in Three-Dimensional Manifolds: Quantum Topology, Hyperbolic Geometry, and Applications
RUI:三维流形中的结:量子拓扑、双曲几何和应用
- 批准号:
1906323 - 财政年份:2019
- 资助金额:
$ 15.09万 - 项目类别:
Standard Grant
Quantum invariants and hyperbolic manifolds in three-dimensional topology
三维拓扑中的量子不变量和双曲流形
- 批准号:
DP160103085 - 财政年份:2016
- 资助金额:
$ 15.09万 - 项目类别:
Discovery Projects
Geometry and topology of curves and surfaces in closed hyperbolic manifolds
闭双曲流形中曲线和曲面的几何和拓扑
- 批准号:
1201463 - 财政年份:2012
- 资助金额:
$ 15.09万 - 项目类别:
Continuing Grant
Geometry and topology of hyperbolic 3-manifolds
双曲3流形的几何和拓扑
- 批准号:
1240329 - 财政年份:2011
- 资助金额:
$ 15.09万 - 项目类别:
Standard Grant
Geometry and topology of hyperbolic 3-manifolds
双曲3流形的几何和拓扑
- 批准号:
1007175 - 财政年份:2010
- 资助金额:
$ 15.09万 - 项目类别:
Standard Grant
Topology, geometry and arithmetic of hyperbolic 3-manifolds
双曲3流形的拓扑、几何和算术
- 批准号:
0906155 - 财政年份:2009
- 资助金额:
$ 15.09万 - 项目类别:
Continuing Grant
Geometry and topology of hyperbolic manifolds
双曲流形的几何和拓扑
- 批准号:
0904355 - 财政年份:2009
- 资助金额:
$ 15.09万 - 项目类别:
Standard Grant
Geometry and Topology of Hyperbolic 3-Manifolds
双曲3流形的几何和拓扑
- 批准号:
0741604 - 财政年份:2007
- 资助金额:
$ 15.09万 - 项目类别:
Standard Grant
Geometry and Topology of Hyperbolic 3-Manifolds
双曲3流形的几何和拓扑
- 批准号:
0603711 - 财政年份:2006
- 资助金额:
$ 15.09万 - 项目类别:
Standard Grant