Topology, geometry and arithmetic of hyperbolic 3-manifolds

双曲3流形的拓扑、几何和算术

基本信息

  • 批准号:
    0906155
  • 负责人:
  • 金额:
    $ 27.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

Culler and Shalen will continue their research on hyperbolic 3-manifolds. One of the main themes of their work is the connection between topologically defined invariants of such manifolds and their quantitative geometric invariants such as volume. This has involved interactions between very classical techniques in 3-manifold topology, some of which go back to Papakyriakopoulos's work in the 1950's, and more geometric methods such as the log(2k-1)-theorem of Anderson, Canary, Culler and Shalen, the work of Kojima and Miyamoto on hyperbolic manifolds with totally geodesic boundary, and the work of Agol, Dunfield, Storm and Thurston based on properties of the Ricci flow with surgeries. A second theme, which recently has grown out of the first, is the connection between the number-theoretic invariants of a manifold such as its trace field and quantitative geometric invariants such as its Margulis number. This aspect of the work depends on combining the earlier work with new group-theoretic observations, and has already brought into play such deep number-theoretic ingredients as the work of Siegel and Mahler on the unit equation in algebraic number fields.Hyperbolic manifolds are geometric objects that arise in many branches of mathematics and in many applications of mathematics. The first hyperbolic manifold, called hyperbolic space, was discovered in the 19th century and settled---in the negative---the ancient problem of whether Euclid's fifth postulate could be deduced from his other postulates. Hyperbolic manifolds may be thought of as geometric objects which at small scales are indistinguishable from hyperbolic space, but whose large-scale behavior is more complicated. A major theme in modern geometry is the interaction between the quantitative properties of a geometric object, for example those defined in terms of distances, lengths, areas and volumes, and their "topological"properties which are more qualitative and are unchanged when the object is deformed. In the case of hyperbolic manifolds, so much progress has been made in recent years in relating the quantitative and topological theories that they may be said to be completely unified at an abstract level. The present project involves making our understanding the connection in a more concrete way. Doing this turns out to involve deep ideas from many branches of mathematics.
Culler和Shalen将继续他们对双曲三维流形的研究。他们的工作的主要主题之一是拓扑定义的不变量之间的连接等流形和定量几何不变量,如体积。这涉及到3-流形拓扑中非常经典的技术之间的相互作用,其中一些可以追溯到Papakyriakopoulos在20世纪50年代的工作,以及更多的几何方法,如安德森,金丝雀,Culler和Shalen的log(2k-1)-定理,Kojima和Miyamoto关于具有全测地边界的双曲流形的工作,以及Agol,Dunfield,Storm和Thurston基于手术的Ricci流的性质。第二个主题,最近已经成长出的第一个,是数论不变量之间的连接流形,如其跟踪领域和定量几何不变量,如其马古利斯数。这方面的工作取决于结合早期的工作与新的群论的意见,并已发挥这种深刻的数论成分的工作西格尔和马勒的单位方程在代数数域。双曲流形是几何对象,出现在许多分支的数学和许多应用的数学。第一个双曲流形,称为双曲空间,是在19世纪世纪发现的,并以否定的方式解决了欧几里得的第五公设是否可以从他的其他公设推导出来的古老问题。双曲流形可以被认为是在小尺度下与双曲空间无法区分的几何对象,但其大尺度行为更为复杂。现代几何学的一个主要主题是几何对象的定量属性之间的相互作用,例如距离,长度,面积和体积,以及它们的“拓扑”属性,这些属性更具定性,并且在对象变形时不变。在双曲流形的情况下,近年来在定量理论和拓扑理论的联系上取得了很大的进展,可以说它们在抽象的层次上是完全统一的。本项目涉及以更具体的方式使我们理解这种联系。这样做涉及到数学许多分支的深刻思想。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marc Culler其他文献

Singular surfaces, mod 2 homology, and hyperbolic volume, II
  • DOI:
    10.1016/j.topol.2010.10.008
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Marc Culler;Peter B. Shalen
  • 通讯作者:
    Peter B. Shalen

Marc Culler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marc Culler', 18)}}的其他基金

Hyperbolic 3-manifolds
双曲 3 流形
  • 批准号:
    1207720
  • 财政年份:
    2012
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Standard Grant
The Topology of Hyperbolic 3-Manifolds
双曲3流形的拓扑
  • 批准号:
    0608567
  • 财政年份:
    2006
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Continuing Grant
Journees Peter Shalen - A Conference on 3-Dimensional Topology and Its Role in Mathematics
Journees Peter Shalen - 3 维拓扑及其在数学中的作用的会议
  • 批准号:
    0603270
  • 财政年份:
    2006
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Standard Grant
Topology of Three Manifolds
三流形拓扑
  • 批准号:
    9971660
  • 财政年份:
    1999
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Continuing Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
  • 批准号:
    9872025
  • 财政年份:
    1998
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Standard Grant
Topological Methods in Group Theory
群论中的拓扑方法
  • 批准号:
    8003238
  • 财政年份:
    1980
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Standard Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
  • 批准号:
    2338933
  • 财政年份:
    2024
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Continuing Grant
Topology, Geometry and Arithmetic of Representation Varieties
表示簇的拓扑、几何和算术
  • 批准号:
    487339-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Postdoctoral Fellowships
Topology, Geometry and Arithmetic of Representation Varieties
表示簇的拓扑、几何和算术
  • 批准号:
    487339-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Postdoctoral Fellowships
CAREER: Moduli of curves via topology, geometry, and arithmetic
职业:通过拓扑、几何和算术计算曲线模
  • 批准号:
    1350075
  • 财政年份:
    2014
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Continuing Grant
SM: Arithmetic Groups and Their Applications in Combinatorics, Geometry and Topology
SM:算术群及其在组合学、几何和拓扑中的应用
  • 批准号:
    1034750
  • 财政年份:
    2010
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Standard Grant
Applications of Topology to Arithmetic and Algebraic Geometry
拓扑在算术和代数几何中的应用
  • 批准号:
    1005675
  • 财政年份:
    2010
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Standard Grant
New developments in number theory and geometry : arithmetic topology, categorical arithmetic geometry, algorithm
数论与几何新进展:算术拓扑、分类算术几何、算法
  • 批准号:
    19204002
  • 财政年份:
    2007
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Hyperbolic Manifolds: Geometry, Topology, Group Theory and Arithmetic
双曲流形:几何、拓扑、群论和算术
  • 批准号:
    0503753
  • 财政年份:
    2005
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Standard Grant
Beyond the framework of classical arithmetic geometry-Zeta, arithmetic topology, and categorical arithmetic geometry
超越经典算术几何的框架——Zeta、算术拓扑和分类算术几何
  • 批准号:
    16204002
  • 财政年份:
    2004
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Summer School and Conferenceon the Arithmetic, Geometry and Topology of Algebraic Cycles; June 15-July 7, 2003; Morelia, Mexico
代数圈的算术、几何和拓扑暑期学校和会议;
  • 批准号:
    0301220
  • 财政年份:
    2003
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了