Geometry and topology of hyperbolic 3-manifolds

双曲3流形的几何和拓扑

基本信息

  • 批准号:
    1240329
  • 负责人:
  • 金额:
    $ 9.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

The project explores the geometry and topology of three-dimensional hyperbolic manifolds, those which admit a Riemannian metric with negative sectional curvatures. Some of the most fundamental questions about hyperbolic 3-manifolds concern the extent to which their properties are inherited in, or, conversely, may develop among covering spaces of finite degree. The famous virtual Haken and virtual fiberering conjectures answer this description, for example, as do the questions below. Given a hyperbolic 3-manifold with a special topological property, for instance a knot complement, with how many others that have this same property does it share a finite-degree cover? Or for a fixed hyperbolic 3-manifold M and a family of finite-degree covers {M_n}, does the rank of the fundamental group of M_n grow linearly with the covering degree? This relates to the fixed price question in the study of topological dynamics. The PI intends to continue his attacks on these and other questions, such as the possibility of embedding in right-angled Artin groups. He will also further describe the topology of hyperbolic manifolds with low volume.The objects of study here, 3-manifolds, are spaces which look, in a neighborhood of each point, like the familiar three-dimensional space in which we live. Although their definition allows quite a bit of flexibility, 3-manifolds share with 2-manifolds (surfaces) the property that each admits a unique best metric, a way of measuring the distance between two points in the space. This property of low-dimensional manifolds, known in dimension 3 as Thurston's geometrization conjecture and proven recently by V. Perelman, has motivated an enormous body of work that uses geometry as a tool for understanding 3-manifolds, and the project follows this broad theme. The study of 3-manifolds has benefited from its interaction with many different fields of mathematics, and the project additionally draws from questions and techniques in the study of topological dynamics, geometric flows, geometric group theory, and others. The project will help us better understand the classification of 3-manifolds and the relationships between them. This in turn has applications in such diverse fields as cosmology (in determining the shape of the universe, for example), biology (in understanding the knotting of DNA), and computer science (through connections with families of graphs that certain families of 3-manifolds coarsely resemble), among others.
该项目探讨三维双曲流形的几何和拓扑,这些流形允许具有负截面曲率的黎曼度量。 关于双曲三维流形的一些最基本的问题涉及到它们的性质在有限度的覆盖空间中继承的程度,或者相反,可能在有限度的覆盖空间中发展。 例如,著名的虚拟哈肯和虚拟纤维环结构回答了这一描述,下面的问题也是如此。 给定一个具有特殊拓扑性质的双曲3-流形,例如一个纽结补,它和多少个具有相同性质的流形共享一个有限度覆盖? 或者对于固定的双曲三维流形M和有限次覆盖族{M_n},M_n的基本群的秩是否随覆盖度线性增长? 这涉及到拓扑动力学研究中的固定价格问题。 PI打算继续他对这些和其他问题的攻击,例如嵌入直角Artin群的可能性。 他还将进一步描述低体积双曲流形的拓扑结构。这里的研究对象,3-流形,是在每个点的邻近区域看起来像我们生活的熟悉的三维空间的空间。 虽然它们的定义允许相当多的灵活性,但3-流形与2-流形(曲面)共享一个属性,即每个流形都有一个唯一的最佳度量,一种测量空间中两点之间距离的方法。 低维流形的这种性质,在3维中称为瑟斯顿的几何化猜想,最近由V. Perelman证明,激发了大量的工作,使用几何作为理解3-流形的工具,该项目遵循这一广泛的主题。 三维流形的研究得益于它与许多不同数学领域的相互作用,该项目还借鉴了拓扑动力学,几何流,几何群论等研究中的问题和技术。该项目将帮助我们更好地理解三维流形的分类以及它们之间的关系。 这反过来又在宇宙学(例如确定宇宙的形状),生物学(理解DNA的打结)和计算机科学(通过与某些三维流形族粗略相似的图族的联系)等不同领域中有应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason DeBlois其他文献

Effective virtual and residual properties of some arithmetic hyperbolic 3–manifolds
一些算术双曲 3 流形的有效虚性质和残差性质
GENERIC HYPERBOLIC KNOT COMPLEMENTS WITHOUT HIDDEN SYMMETRIES
没有隐藏对称性的通用双曲结互补
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason DeBlois
  • 通讯作者:
    Jason DeBlois
Surface groups are frequently faithful
表面群体通常是忠诚的
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason DeBlois;IV RichardP.Kent
  • 通讯作者:
    IV RichardP.Kent
Algebraic invariants, mutation, and commensurability of link complements
链接补体的代数不变量、变异和可通约性
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric B. Chesebro;Jason DeBlois
  • 通讯作者:
    Jason DeBlois
On the doubled tetrus
关于双倍的特鲁斯
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason DeBlois
  • 通讯作者:
    Jason DeBlois

Jason DeBlois的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason DeBlois', 18)}}的其他基金

Geometry and topology of hyperbolic 3-manifolds
双曲3流形的几何和拓扑
  • 批准号:
    1007175
  • 财政年份:
    2010
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0703749
  • 财政年份:
    2007
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Fellowship

相似国自然基金

Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
Domain理论与拓扑学研究
  • 批准号:
    60473009
  • 批准年份:
    2004
  • 资助金额:
    7.0 万元
  • 项目类别:
    面上项目

相似海外基金

RUI: Knots in Three-Dimensional Manifolds: Quantum Topology, Hyperbolic Geometry, and Applications
RUI:三维流形中的结:量子拓扑、双曲几何和应用
  • 批准号:
    1906323
  • 财政年份:
    2019
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant
Quantum Topology and Hyperbolic Geometry
量子拓扑和双曲几何
  • 批准号:
    1912700
  • 财政年份:
    2019
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant
Hyperbolic Geometry, Heegaard Surfaces, Foliation/Lamination Theory, and Smooth Four-Dimensional Topology
双曲几何、Heegaard 曲面、叶状/层状理论和平滑四维拓扑
  • 批准号:
    1607374
  • 财政年份:
    2016
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Continuing Grant
Classical and quantum hyperbolic geometry and topology
经典和量子双曲几何和拓扑
  • 批准号:
    1522850
  • 财政年份:
    2015
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant
Quantum Topology and Hyperbolic Geometry
量子拓扑和双曲几何
  • 批准号:
    1251399
  • 财政年份:
    2013
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant
Geometry and topology of curves and surfaces in closed hyperbolic manifolds
闭双曲流形中曲线和曲面的几何和拓扑
  • 批准号:
    1201463
  • 财政年份:
    2012
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Continuing Grant
Hyperbolic geometry, topology and dynamics
双曲几何、拓扑和动力学
  • 批准号:
    1005973
  • 财政年份:
    2010
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Continuing Grant
Geometry and topology of hyperbolic 3-manifolds
双曲3流形的几何和拓扑
  • 批准号:
    1007175
  • 财政年份:
    2010
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant
Topology, geometry and arithmetic of hyperbolic 3-manifolds
双曲3流形的拓扑、几何和算术
  • 批准号:
    0906155
  • 财政年份:
    2009
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Continuing Grant
Geometry and topology of hyperbolic manifolds
双曲流形的几何和拓扑
  • 批准号:
    0904355
  • 财政年份:
    2009
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了