NIRT: Nanometer Stoichiometric Particle Compound Solutions and Control of their Self-Assembly into the Condensed Phase

NIRT:纳米化学计量颗粒化合物溶液及其自组装进入凝聚相的控制

基本信息

  • 批准号:
    0609318
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-10-01 至 2011-09-30
  • 项目状态:
    已结题

项目摘要

National Science Foundation - Active Nanostructure and Nanosystems (ANN) (NSF 05-610)Nanoscale Interdisciplinary Research Teams (NIRT)ABSTRACTProposal Number: 0609318Principal Investigator: Sorenson, Christopher M.Affiliation: Kansas State UniversityProposal Title: NIRT: Nanometer Stoichiometric Particle Compound Solutions and Control of their Self-Assembly into the Condensed PhaseThis proposal was received in response to Nanoscale Science and Engineering initiative, NSF 05-610, category NIRT. The goal is to create a new family of nanometer "stoichiometric particle compounds," or what could also be called nanoparticles of all the same size, and to control their active assembly into condensed phases. In order to do this, understanding and control of solution phase and interfacial properties is needed. Understanding of particulate self-assembly to yield two and three dimensional superlattices, films and gels is also needed. To achieve this goal a series of nanomaterials will be synthesized in large amounts and will be "nanomachined" (digestively ripened) to molecular stoichiometry and stabilized with selected surface ligands. The ligands will be chosen for their tendencies to be hydrophobic or hydrophilic, their ability to form ordered monolayers, and to hydrogen bond and/or interdigitate with neighbors. In this way solution phase behavior, aggregation, crystallization to form superlattices, and assembly into various structures will be controlled. The physical chemistry of solutions, their phase diagrams, interfacial phenomena, and transitions to other phases is very well understood. Moreover, much is known about colloid phase stability and what happens when the colloid is destabilized. The new nanometer size stoichiometric particle compounds to be studied lie between solutions and colloids, and their phase behavior, interfacial phenomena, transitions to other phases, and controlled assembly have not been explored with experiment or theory. This research will attempt to rectify this lack of experimental data and understanding, and hence bind all these systems with one universal description. Therecently developed supramolecular building techniques will be extended to assembly of particles rather than molecules. The idea is to view these nearly uniform in size and composition nanoparticles as stoichiometric compounds with behavior, perhaps in some novel manner, analogous to "normal" atomic and molecular systems. Creation of materials based on single-sized nanoparticles, rather than atoms and molecules that actively assemble into superlattices, films, gels and supermolecular entities would yield a whole new class of materials with which it could rebuild or recreate all our modern marvels. Stoichiometric particle compounds can produce a particle-based world. Thus, from a broad perspective, this is an attempt to develop and then use the concept of a three-dimensional periodic table where size is the third dimension. The PIs will develop a streamlined set of course options to allow our students to achieve a broad training across physics, chemistry, materials science and engineering without significantly adding time to their training experience. The program will introduce teen women to nanoscience and technology through a recently established and very successful summer workshop series. The PIs will include undergraduates in the research year round.
国家科学基金会-主动纳米结构和纳米系统(ANN)(NSF 05-610)纳米级跨学科研究小组(NIRT)摘要提案编号:0609318主要研究员:Sorenson,Christopher M. 堪萨斯州立大学提案标题:NIRT:纳米化学计量颗粒化合物的解决方案和控制其自组装成凝聚相这一建议是在响应纳米科学和工程倡议,NSF 05-610,类别NIRT。 其目标是创造一个新的纳米“化学计量颗粒化合物”家族,或者也可以称为所有相同尺寸的纳米颗粒,并控制它们主动组装成凝聚相。为了做到这一点,需要了解和控制溶液相和界面性质。还需要了解颗粒自组装产生二维和三维超晶格,薄膜和凝胶。为了实现这一目标,将大量合成一系列纳米材料,并将其“纳米加工”(消化成熟)到分子化学计量,并用选定的表面配体稳定。配体将根据其疏水或亲水的倾向、其形成有序单层的能力以及与相邻配体形成氢键和/或相互交叉的能力来选择。以这种方式,溶液相行为、聚集、结晶以形成超晶格以及组装成各种结构将被控制。溶液的物理化学,它们的相图,界面现象,以及向其他相的转变都是非常好理解的。此外,人们对胶体相的稳定性以及胶体不稳定时会发生什么已经有了很多了解。新的纳米尺寸的化学计量颗粒化合物的研究介于溶液和胶体之间,其相行为,界面现象,过渡到其他相,并控制组装没有探索与实验或理论。这项研究将试图纠正这种缺乏实验数据和理解的情况,从而将所有这些系统与一个通用的描述联系起来。最近发展起来的超分子组装技术将从分子组装扩展到粒子组装。这个想法是将这些尺寸和组成几乎均匀的纳米颗粒视为化学计量的化合物,其行为可能以某种新颖的方式类似于“正常”的原子和分子系统。基于单一尺寸的纳米颗粒,而不是原子和分子主动组装成超晶格,薄膜,凝胶和超分子实体的材料的创造将产生一种全新的材料,它可以重建或重新创造我们所有的现代奇迹。化学计量的粒子化合物可以产生基于粒子的世界。因此,从广义的角度来看,这是一种尝试,以发展和使用三维周期表的概念,其中尺寸是第三维。PI将开发一套精简的课程选项,使我们的学生能够在物理,化学,材料科学和工程方面获得广泛的培训,而不会显著增加他们的培训时间。该计划将通过最近成立的非常成功的夏季研讨会系列向青少年女性介绍纳米科学和技术。PI将包括全年研究的本科生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Sorensen其他文献

Christopher Sorensen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Sorensen', 18)}}的其他基金

Studies of Light Scattering by Particles of Arbitrary Shape
任意形状粒子光散射的研究
  • 批准号:
    1649783
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Experimental and Theoretical Studies of Light Scattering from Irregularly Shaped Particles
不规则形状粒子光散射的实验和理论研究
  • 批准号:
    1261651
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Support for Students to Attend Nanoaerosol Characterization Symposium
支持学生参加纳米气溶胶表征研讨会
  • 批准号:
    0627929
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Implementation of the Interactive Studio Concept to an Upper Level Physics Course: Studio Optics
将交互式工作室概念应用于高级物理课程:工作室光学
  • 批准号:
    0511667
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Aerosol Physics: Optics, Gelation and Turbulent Aggregation
气溶胶物理学:光学、凝胶化和湍流聚集
  • 批准号:
    0080017
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Implementation of a Novel Studio Curriculum
实施新颖的工作室课程
  • 批准号:
    9972502
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Aerosol Fractal Aggregate Optics and Kinetics in Laminar and Turbulent Flows
层流和湍流中的气溶胶分形聚集光学和动力学
  • 批准号:
    9709764
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Aerosol Fractal Aggregates: Light Scattering, Diffusion, and Aggregation
气溶胶分形聚集体:光散射、扩散和聚集
  • 批准号:
    9408153
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Acquisition of SQUID Magnetometer to Augment Magnetics Research
购买 SQUID 磁力计以增强磁学研究
  • 批准号:
    9123831
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Light Scattering Studies of Fractal Soot Aggregates in Flames
火焰中分形烟灰聚集体的光散射研究
  • 批准号:
    9024668
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

MFB: Next-generation Proximity Labeling Technologies to Map Subcellular Transcriptomes and RNA Interactomes in Living Cells with Nanometer Resolution
MFB:下一代邻近标记技术以纳米分辨率绘制活细胞中的亚细胞转录组和 RNA 相互作用组图
  • 批准号:
    2330686
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: The interaction of surfaces structured at the nanometer scale with the cells in the physiological environment
合作研究:纳米尺度结构的表面与生理环境中细胞的相互作用
  • 批准号:
    2224902
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nanometer-scale 3D analysis of brain tissue of schizophrenia cases in the U.S.
对美国精神分裂症病例脑组织进行纳米级 3D 分析
  • 批准号:
    23H02800
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: The interaction of surfaces structured at the nanometer scale with the cells in the physiological environment
合作研究:纳米尺度结构的表面与生理环境中细胞的相互作用
  • 批准号:
    2224942
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Spectroscopic high-speed motion picture measurement of sound field with nanometer-order precision
纳米级精度的声场光谱高速运动图像测量
  • 批准号:
    22K18809
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of high-performance organic photovoltaic materials that do not require nanometer-scale phase separation
开发不需要纳米级相分离的高性能有机光伏材料
  • 批准号:
    22K19091
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Heterointerface phonon-transport analysis by nanometer-resolution electron spectroscopy
通过纳米分辨率电子能谱进行异质界面声子输运分析
  • 批准号:
    22H01959
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Nanometer-to-micrometer Length Scale Mechanical and Tribological Characterization System
纳米到微米长度尺度的机械和摩擦学表征系统
  • 批准号:
    RTI-2023-00432
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Tools and Instruments
Sub-nanometer Optical Imaging and Self-Assembly on Plasmonic Metals
等离子金属的亚纳米光学成像和自组装
  • 批准号:
    RGPIN-2022-03088
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Machine-Learning-Driven Synthesis Methodologies for Analog and RF Integrated Circuits in Advanced Nanometer Technologies
先进纳米技术中模拟和射频集成电路的机器学习驱动合成方法
  • 批准号:
    RGPIN-2019-04130
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了