Machine-Learning-Driven Synthesis Methodologies for Analog and RF Integrated Circuits in Advanced Nanometer Technologies

先进纳米技术中模拟和射频集成电路的机器学习驱动合成方法

基本信息

  • 批准号:
    RGPIN-2019-04130
  • 负责人:
  • 金额:
    $ 2.84万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

As the conventional planar CMOS technology scales down to 22nm and below, maintaining ideal transistor characteristics becomes increasingly challenging. For this reason, nonplanar field-effect transistors (FETs) have been regarded as effective substitutes for ultimate scaling. Due to physical complexity of the nonplanar FET structure in advanced nanometer technologies, transistor performance is strongly affected by associated parasitics, layout dependent effects (LDEs), and lithographic imperfection. To maintain signal integrity, these issues have to be seriously considered in the synthesis of analog/RF integrated circuits (ICs). In this research program, the fascinating advancement of artificial intelligence will be leveraged to promote electronic design automation (EDA) of analog/RF ICs. A complete set of synthesis methodologies and computer-aided design tools will be studied to strengthen the link between performance optimization and physical effects. An innovative machine-learning-driven circuit topology synthesis methodology will be developed. It can emulate expert human designers to apply the knowledge extracted from the given training data to effectively generate proper circuit topologies through inference. Moreover, a novel parasitic/LDE/lithography-aware circuit-sizing methodology will be studied; this methodology would consist of a quick approximate optimization stage followed by a simulation-based refined sizing process. Parasitics, LDEs, and lithographic effects in the advanced nonplanar nanometer technologies will be integrated into MOSFET modeling, which can be included into the topology synthesis and circuit sizing for proactive consideration of layout impact. Furthermore, to fill the vacuum of similar commercial tools in the EDA market, we will continue to explore automated analog/RF layout migration strategies to address parasitics, LDEs, and lithography-related constraints in the nonplanar nanometer technologies. Due to their high sensitivity to complicated analog effects, analog/RF ICs have been recognized as the design bottleneck for promptly pushing mixed-signal system-on-chip products to market. Systematic countermeasures in the layout-aware comprehensive synthesis of analog/RF ICs have not yet been addressed worldwide. With enormous potential for commercialization, this proposed research program addresses the increasingly challenging parasitics, LDEs, and lithographic issues in the nonplanar nanometer technologies; these issues cannot be ignored for analog/RF IC synthesis especially under the shrinking design window and pressing process variation. This program will train over half a dozen next-generation highly qualified personnel (HQP) on advanced EDA in upgraded nanometer technologies. It will benefit the analog/RF design community through significant improvements in design productivity and reliability, which can enhance Canada's competitive advantage in this field.
随着传统的平面CMOS工艺缩小到22 nm及以下,保持理想的晶体管特性变得越来越具有挑战性。由于这个原因,非平面场效应晶体管(FET)已被视为最终缩放的有效替代品。由于先进纳米技术中非平面FET结构的物理复杂性,晶体管性能受到相关寄生效应、布局相关效应(LDE)和光刻缺陷的强烈影响。为了保持信号的完整性,这些问题必须在模拟/RF集成电路(IC)的综合中认真考虑。在这项研究计划中,人工智能的迷人进步将被用来促进模拟/RF IC的电子设计自动化(EDA)。将研究一套完整的综合方法和计算机辅助设计工具,以加强性能优化和物理效应之间的联系。将开发一种创新的机器学习驱动的电路拓扑综合方法。它可以模拟专家人类设计师应用从给定的训练数据中提取的知识,通过推理有效地生成适当的电路拓扑结构。此外,一种新的寄生/LDE/光刻感知电路尺寸的方法将进行研究,这种方法将包括一个快速的近似优化阶段,然后通过基于仿真的精细尺寸的过程。先进的非平面纳米技术中的寄生效应、LDE和光刻效应将被集成到MOSFET建模中,这些建模可以被包括在拓扑合成和电路尺寸设计中,以主动考虑布局影响。此外,为了填补EDA市场上类似商业工具的空白,我们将继续探索自动模拟/RF布局迁移策略,以解决非平面纳米技术中的寄生效应、LDE和光刻相关限制。 由于模拟/射频集成电路对复杂模拟效应的高度敏感性,已被公认为是快速将混合信号片上系统产品推向市场的设计瓶颈。在模拟/RF IC的布局感知综合中的系统性对策尚未在全球范围内得到解决。具有巨大的商业化潜力,这个拟议的研究计划解决了日益具有挑战性的寄生效应,LDE,和光刻问题的非平面纳米技术,这些问题不能被忽视的模拟/RF IC合成,特别是在缩小设计窗口和紧迫的工艺变化。该计划将培训超过六名下一代高素质人员(HQP)在升级的纳米技术先进的EDA。它将通过显著提高设计生产力和可靠性,使模拟/RF设计界受益,从而增强加拿大在该领域的竞争优势。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhang, Lihong其他文献

Pharmacodynamics and metabonomics study of Tianma Gouteng Decoction for treatment of spontaneously hypertensive rats with liver-yang hyperactivity syndrome
  • DOI:
    10.1016/j.jep.2020.112661
  • 发表时间:
    2020-05-10
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Dong, Hongyan;Zhang, Shaoqiang;Zhang, Lihong
  • 通讯作者:
    Zhang, Lihong
Comparing three-dimensional and two-dimensional deep-learning, radiomics, and fusion models for predicting occult lymph node metastasis in laryngeal squamous cell carcinoma based on CT imaging: a multicentre, retrospective, diagnostic study.
  • DOI:
    10.1016/j.eclinm.2023.102385
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Wang, Wenlun;Liang, Hui;Zhang, Zhouyi;Xu, Chenyang;Wei, Dongmin;Li, Wenming;Qian, Ye;Zhang, Lihong;Liu, Jun;Lei, Dapeng
  • 通讯作者:
    Lei, Dapeng
The Application of Software "Rapid Processing of Perfusion and Diffusion" in Acute Ischemic Stroke.
  • DOI:
    10.3390/brainsci12111451
  • 发表时间:
    2022-10-27
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Zhang, Yudi;Song, Shuang;Li, Zhenzhong;Huang, Boyuan;Geng, Yanlu;Zhang, Lihong
  • 通讯作者:
    Zhang, Lihong
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) quantification of transient ischemia using a combination method of 5-pool Lorentzian fitting and inverse Z-spectrum analysis.
  • DOI:
    10.21037/qims-22-420
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Zhang, Lihong;Xu, Chongxin;Li, Zhen;Sun, Junding;Wang, Xiaoli;Hou, Beibei;Zhao, Yingcheng
  • 通讯作者:
    Zhao, Yingcheng
Prognostic Values Serum Cav-1 and NGB Levels in Early Neurological Deterioration After Intravenous Thrombolysis in Patients with Acute Ischemic Stroke.
  • DOI:
    10.1177/10760296231219707
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Zhang, Lihong;Wang, Cui;Zhao, Manhong;Li, Xuesong;Qu, Hong;Xu, Jianping;Li, Di
  • 通讯作者:
    Li, Di

Zhang, Lihong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhang, Lihong', 18)}}的其他基金

Ultra-Low Power SAR ADC for Low-Activity Signals (I2I-Lab2Market - Market Assessment)
适用于低活动信号的超低功耗 SAR ADC(I2I-Lab2Market - 市场评估)
  • 批准号:
    571223-2022
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Idea to Innovation
Machine-Learning-Driven Synthesis Methodologies for Analog and RF Integrated Circuits in Advanced Nanometer Technologies
先进纳米技术中模拟和射频集成电路的机器学习驱动合成方法
  • 批准号:
    RGPIN-2019-04130
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Piezoelectric MEMS Vibration Energy Harvesters: Renewable Energy Source in the Portable Era (I2I Phase - Market Assessment)
压电 MEMS 振动能量采集器:便携式时代的可再生能源(I2I 阶段 - 市场评估)
  • 批准号:
    570988-2022
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Idea to Innovation
Machine-Learning-Driven Synthesis Methodologies for Analog and RF Integrated Circuits in Advanced Nanometer Technologies
先进纳米技术中模拟和射频集成电路的机器学习驱动合成方法
  • 批准号:
    RGPIN-2019-04130
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Machine-Learning-Driven Synthesis Methodologies for Analog and RF Integrated Circuits in Advanced Nanometer Technologies
先进纳米技术中模拟和射频集成电路的机器学习驱动合成方法
  • 批准号:
    RGPIN-2019-04130
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Synergistic Synthesis Methodologies and Computer-Aided Design Tools for Analog and RF Integrated Circuits in Advanced Technologies
先进技术中模拟和射频集成电路的协同综合方法和计算机辅助设计工具
  • 批准号:
    342185-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Synergistic Synthesis Methodologies and Computer-Aided Design Tools for Analog and RF Integrated Circuits in Advanced Technologies
先进技术中模拟和射频集成电路的协同综合方法和计算机辅助设计工具
  • 批准号:
    342185-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Synergistic Synthesis Methodologies and Computer-Aided Design Tools for Analog and RF Integrated Circuits in Advanced Technologies
先进技术中模拟和射频集成电路的协同综合方法和计算机辅助设计工具
  • 批准号:
    342185-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Synergistic Synthesis Methodologies and Computer-Aided Design Tools for Analog and RF Integrated Circuits in Advanced Technologies
先进技术中模拟和射频集成电路的协同综合方法和计算机辅助设计工具
  • 批准号:
    342185-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Manufacturability-aware performance-driven layout-centric design automation of analog and RF integrated circuits
模拟和射频集成电路的可制造性感知、性能驱动、以布局为中心的设计自动化
  • 批准号:
    342185-2007
  • 财政年份:
    2012
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Revolutionizing Seamless Precipitation Forecast: Machine Learning-Driven Assimilation of Satellite Precipitation Observations in NICAM-LETKF for Powering Global Diurnal and Heavy Rainfall Predictions
彻底改变无缝降水预报:NICAM-LETKF 中机器学习驱动的卫星降水观测同化,为全球昼夜和强降雨预测提供支持
  • 批准号:
    24K17129
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
  • 批准号:
    23K24856
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
  • 批准号:
    2236947
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
  • 批准号:
    2301173
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Continuing Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
  • 批准号:
    2301172
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Continuing Grant
CAREER: Towards Provenance-Driven Understanding of Machine Learning Robustness
职业:对机器学习鲁棒性的起源驱动理解
  • 批准号:
    2238084
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Continuing Grant
CAREER: Data-driven design of graphene oxide for environmental applications enabled by natural language processing and machine learning techniques
职业:通过自然语言处理和机器学习技术实现氧化石墨烯环境应用的数据驱动设计
  • 批准号:
    2238415
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Continuing Grant
BRITE-Eye: An integrated discovery engine for CNS therapeutic targets driven by high throughput genetic screens, functional readouts in human neurons, and machine learning
BRITE-Eye:由高通量遗传筛选、人类神经元功能读数和机器学习驱动的中枢神经系统治疗靶点的集成发现引擎
  • 批准号:
    10699137
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
Improving data-driven design using physical model-based machine learning
使用基于物理模型的机器学习改进数据驱动设计
  • 批准号:
    23K13239
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Data-Driven Scheduling of Orthopaedic Surgical Services: An End-to-End Framework with Machine Learning and Mathematical Optimization
数据驱动的骨科手术服务调度:具有机器学习和数学优化的端到端框架
  • 批准号:
    490488
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了