Fluid Transport Models for Multi-Phase Flow Systems: Asymptotic Analysis, Homogenization, and Computation

多相流系统的流体传输模型:渐近分析、均质化和计算

基本信息

  • 批准号:
    0610149
  • 负责人:
  • 金额:
    $ 16.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-01 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

Multi-phase fluid transport is one of the most important mechanisms behind many interesting fluid phenomena. Research on the mechanisms of multi-phase fluid transport has directly or indirectly motivated the creation of many advanced techniques in the fields of asymptotic analysis, homogenization, and scientific computing. This project introduces two fluid transport models and an efficient numerical algorithm to study multi-phase fluid dynamics that can be observed in human lung pathways or in pores and throats of a porous medium. The multi-phase flows under consideration in this project are the two-phase gas-liquid pipe flow and the fluid-solid interactions. For the two-phase pipe flow, a multi-phase fluid model is investigated, for which the air is turbulent and the thin liquid film is either a viscous or viscoelastic fluid. Evolution equations for the liquid interfaces is obtained through matched asymptotic expansions while turbulence models are applied to the gas flow. The motivation for studying this kind of flow comes from a need to understand the hydrodynamic feedback mechanisms that govern mucus-air flow coupling in the human respiratory system. Accordingly, the principle investigator (PI) has developed an implicit Immersed Interface Method (IIM) for this two-phase pipe flow in three dimensions. The IIM takes advantage of jumps of normal stresses across the interface, avoiding smearing of the singular surface tension force, and thus preserves volume-conservation and provides sharp resolution of the numerical solution across the interface. In addition to studying dynamics of the two-phase pipe flow, the PI probes the major mechanism for mucus removal in lung pathways by developing a novel fluid transport model that portrays the three-dimensional fluid-solid interaction occurring in the muco-ciliary system. Inspired by fluid-solid homogenization problems, this novel model targets an understanding of multi-ciliary dynamics in the mucus layer. This model is not only capable of describing the essence of mucus-ciliary interaction, but also bears great fundamental interest in the development of homogenization theory. To study multi-phase fluid transport, model equations for the transport are usually derived from the fundamental systems. The model equations are mathematically simpler than the fundamental ones. They are derived by isolating a certain physical mechanism that is thought to play the dominant role in the fluid transport phenomenon. Although model equations are approximate to the more complicated systems, the mathematical simplicity of these equations is advantageous to the analysis and efficient numerics that can enhance the predictive power of theories. While this project spans fundamental theories and practical applications in biology or petroleum engineering, the overall goal is, nonetheless, simple and clear. That is, to provide well-understood models as well as the most efficient and accurate numerical algorithms for studying multi-phase fluid transport. Multi-phase fluid transport occurs in fluid dynamics in myriad ways. One example is mucus transport in human respiratory systems. In lung pathways, there is air flow, a mucus layer, and a carpet of cilium layer. The three phases interact with each other and create a unique transport pattern for mucus clearance. The realization of the transport mechanism in lung pathways has been of immense importance for drug delivery inside the lung airways of cystic fibrosis patients. The Enhanced Oil Recovery (EOR) process is another example of multi-phase fluid transport. In the process, compressed carbon dioxide is injected into old oil wells, which induces a rearrangement of the oil layer in porous rocks. Such a multi-phase transport increases the oil production for wells that are in production for years. This EOR technique has been recently introduced to the oil industry in several states, including the state of Wyoming. The mathematical theory and analysis for understanding the transport mechanism behind this technique is crucial to the success of such a practice.
多相流体传输是许多有趣的流体现象背后最重要的机制之一。对多相流体输运机理的研究直接或间接地推动了渐近分析、均匀化和科学计算等领域的许多先进技术的产生。本项目介绍了两种流体传输模型和一种有效的数值算法来研究多相流体动力学,这些流体可以在人的肺部通道中观察到,或者在多孔介质的孔隙和喉道中观察到。本项目所考虑的多相流是气液两相管流和流固相互作用。对于两相管流,研究了一种多相流体模型,其中空气为湍流,液膜为粘性或粘弹性流体。当气体流动采用湍流模型时,通过匹配的渐近展开得到了液体界面的演化方程。研究这种流动的动机是需要了解控制人类呼吸系统中粘液-空气流动耦合的流体动力学反馈机制。因此,首席调查员(PI)发展了一种隐式浸没界面法(IIM)来模拟这种三维两相管流。IIM利用界面上法向应力的跳跃,避免了奇异表面张力的涂抹,从而保持了体积守恒,并提供了界面上数值解的精确分辨率。除了研究两相管流的动力学外,PI还通过建立描述粘液-纤毛系统中发生的三维流固相互作用的新的流体传输模型来探索肺路径中粘液清除的主要机制。受到流固均化问题的启发,这个新的模型旨在了解粘液层中的多纤毛动力学。该模型不仅能够描述粘液-纤毛相互作用的本质,而且对均质化理论的发展具有重要的基础性意义。为了研究多相流体的输运,通常从基本系统出发推导输运的模型方程。模型方程在数学上比基本方程简单。它们是通过分离出被认为在流体传输现象中起主导作用的特定物理机制而产生的。虽然模型方程近似于更复杂的系统,但这些方程的数学简单性有利于分析和有效的数值计算,从而提高理论的预测能力。虽然这个项目跨越了生物学或石油工程的基础理论和实际应用,但总体目标是简单而明确的。也就是说,为研究多相流体输运提供易于理解的模型以及最有效和准确的数值算法。多相流体输运在流体力学中以多种方式发生。一个例子是粘液在人类呼吸系统中的传输。在肺路中,有气流、粘液层和纤毛层。这三个阶段相互作用,为粘液清除创造了一种独特的运输模式。肺内转运机制的实现对于囊性纤维化患者肺内给药具有重要意义。提高采收率(EOR)工艺是多相流体输送的另一个例子。在这个过程中,压缩的二氧化碳被注入到老油井中,导致多孔岩石中的油层重新排列。这种多阶段输送增加了已投产多年的油井的石油产量。这种提高采收率的技术最近已被引入包括怀俄明州在内的几个州的石油行业。理解这种技术背后的传输机制的数学理论和分析对于这种实践的成功至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Long Lee其他文献

A stable numerical method for the double-gyre nonlinear shallow-water model
双旋非线性浅水模型的稳定数值方法
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dongyang Kuang;Long Lee
  • 通讯作者:
    Long Lee
Viscous and inviscid regularizations in a class of evolutionary partial differential equations
一类演化偏微分方程中的粘性和无粘性正则化
  • DOI:
    10.1016/j.jcp.2010.06.002
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    R. Camassa;P. Chiu;Long Lee;T. Sheu
  • 通讯作者:
    T. Sheu
Numerical renormalization group algorithms for self-similar solutions of partial differential equations
偏微分方程自相似解的数值重正化群算法
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Braga;Federico C. Furtado;V. Isaia;Long Lee
  • 通讯作者:
    Long Lee
Numerical Renormalization Group Algorithms for Self-Similar Asymptotics of Partial Differential Equations
偏微分方程自相似渐进的数值重正化群算法
  • DOI:
    10.1137/18m120004x
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Braga;F. Furtado;V. Isaia;Long Lee
  • 通讯作者:
    Long Lee
First two cases of living related liver transplantation with complicated anatomy of blood vessels in Beijing.
北京首例2例复杂血管解剖活体肝移植。
  • DOI:
    10.3748/wjg.v10.i19.2854
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Wen;Y. Wan;Long Lee;Yinmo Yang;Yan;Chao;S. Fan
  • 通讯作者:
    S. Fan

Long Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Long Lee', 18)}}的其他基金

IHBEM: Empirical analysis of a data-driven multiscale metapopulation mobility network modeling infection dynamics and mobility responses in rural States
IHBEM:对数据驱动的多尺度集合人口流动网络进行实证分析,对农村国家的感染动态和流动反应进行建模
  • 批准号:
    2327862
  • 财政年份:
    2023
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Continuing Grant
Rocky Mountain Mathematics Consortium Summer School: Inverse Problems in Imaging
落基山数学联盟暑期学校:成像中的反问题
  • 批准号:
    1855584
  • 财政年份:
    2019
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Standard Grant
Optical Emissions from Photoexcitation of Atmospheric Radicals and Molecules in the Gas Phase and on Aerosol Surfaces
气相和气溶胶表面上的大气自由基和分子的光激发光发射
  • 批准号:
    9016731
  • 财政年份:
    1991
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Standard Grant
Optical Emissions from Photoexcitation of Atmospheric Radicals and Molecules in the Gas Phase and on Aerosol Surfaces
气相和气溶胶表面上的大气自由基和分子的光激发光发射
  • 批准号:
    8715193
  • 财政年份:
    1988
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Continuing Grant
Workshop - Application of Plasma and Lasers in Electronics, Chemical, and Material Processing (San Diego State University; February 23-24, 1987)
研讨会 - 等离子和激光在电子、化学和材料加工中的应用(圣地亚哥州立大学;1987 年 2 月 23-24 日)
  • 批准号:
    8606189
  • 财政年份:
    1986
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Standard Grant
Optical Characteristics and Formation Processes of Aitken Aerosols Studied by Ultraviolet Excitation
紫外激发研究艾特肯气溶胶的光学特性及形成过程
  • 批准号:
    8417647
  • 财政年份:
    1985
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Standard Grant
Emissions From Photofragments of Atmospheric Radicals and Molecules
大气自由基和分子的光碎片的排放
  • 批准号:
    8412618
  • 财政年份:
    1984
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Continuing Grant
Characterization of Aitken Aerosol Particles by Optical Excitation
通过光激发表征艾特肯气溶胶颗粒
  • 批准号:
    8203948
  • 财政年份:
    1982
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Continuing Grant
Emissions From Photofragments of Atmospheric Radicals and Molecules
大气自由基和分子的光碎片的排放
  • 批准号:
    8205849
  • 财政年份:
    1982
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Continuing Grant
Emissions From Photofragments of Atmospheric Radicals and Molecules
大气自由基和分子的光碎片的排放
  • 批准号:
    8109542
  • 财政年份:
    1981
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Continuing Grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
Intraflagellar Transport运输纤毛蛋白的分子机理
  • 批准号:
    31371354
  • 批准年份:
    2013
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
苜蓿根瘤菌(S.meliloti)四碳二羧酸转运系统 (Dicarboxylate transport system, Dct系统)跨膜信号转导机理
  • 批准号:
    30870030
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Exploring the role of vitamin transport in insect models of disease vector biology
探索维生素运输在病媒生物学昆虫模型中的作用
  • 批准号:
    2884651
  • 财政年份:
    2023
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Studentship
Machine-learning quantum surrogate models to simulate energy transport across interfaces
机器学习量子替代模型来模拟跨界面的能量传输
  • 批准号:
    2886134
  • 财政年份:
    2023
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Studentship
SBIR Phase II: Improving fleet operational metrics through service optimization with automated learning of vehicle energy performance models for zero-emission public transport
SBIR 第二阶段:通过服务优化和自动学习零排放公共交通的车辆能源性能模型来改善车队运营指标
  • 批准号:
    2220811
  • 财政年份:
    2023
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Cooperative Agreement
Machine learning models to extract accurate material transport
机器学习模型可提取准确的材料传输
  • 批准号:
    2887164
  • 财政年份:
    2023
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Studentship
Understanding the atmospheric transport and fate of fluorinated Persistent Organic Pollutants with global models
利用全球模型了解氟化持久性有机污染物的大气迁移和归宿
  • 批准号:
    2898143
  • 财政年份:
    2023
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Studentship
Construction of drug transport/metabolism research models by improving functions of human tissue-derived cells
通过改善人体组织来源细胞的功能构建药物转运/代谢研究模型
  • 批准号:
    23H02646
  • 财政年份:
    2023
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Combining In Vitro and In Silico Models to Investigate Antiretroviral Drug Transport Across the Blood Brain Barrier for the Treatment of HIV-1 Infection in the Brain
结合体外和计算机模型研究抗逆转录病毒药物跨血脑屏障转运以治疗大脑中的 HIV-1 感染
  • 批准号:
    10838759
  • 财政年份:
    2023
  • 资助金额:
    $ 16.18万
  • 项目类别:
Exploiting Quantum Computing for Large-Scale Transport Models
利用量子计算进行大规模运输模型
  • 批准号:
    10030783
  • 财政年份:
    2022
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Collaborative R&D
Improved computational models for particle transport in turbulent wall-bounded flows
改进的湍流壁面流动中粒子输运的计算模型
  • 批准号:
    RGPIN-2022-04981
  • 财政年份:
    2022
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Discovery Grants Program - Individual
Uplift histories of landscapes from optimal transport inverse models
从最优传输逆模型提升景观历史
  • 批准号:
    2751902
  • 财政年份:
    2022
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了