Chemical and Mechanical Interactions in Microtubules

微管中的化学和机械相互作用

基本信息

  • 批准号:
    0615568
  • 负责人:
  • 金额:
    $ 52.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-01 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

A major challenge in biology today is to integrate our knowledge of biomolecules to explain complex cell behavior. This challenge is part of the broader challenge in science and engineering of integrating from the nanoscale to the microscale. A prime example of such integration is the microtubule, whose nanometer-sized components, heterodimers of alpha and beta tubulin monomer proteins, self-assemble to form tubes that are 25 nm in diameter and several micrometers long. Once formed, microtubules mediate the transport of vital subcellular cargoes, including mitochondria, membrane-bound secretory and other vesicles, and chromosomes. Understanding the fundamental mechanisms of microtubule assembly and disassembly is therefore crucial to understanding how cells reorganize their cytoplasm during cellular growth, mitosis, and responses to external signals.Microtubules exhibit a highly unusual and complex self-assembly behavior known as "dynamic instability," where individual microtubules switch stochastically between alternate phases of growth and shortening. Various theories have been offered to explain the molecular origin of dynamic instability, but they all fail to explain the mechanics and structure of the microtubule tip. What is required is a computational framework that integrates chemical kinetics and thermodynamics (associated with tubulin addition or loss and GTP hydrolysis) with mechanics (associated with conformational changes in tubulin). Given the importance of mechanical force in microtubule dynamics, it then becomes essential to identify the origin and magnitude of external forces exerted on, and by, microtubules in the cytoplasm. Microtubules are often highly curved in the cytoplasm, and it has been shown that actomyosin contractility can cause microtubule bending. However, it is not clear whether this is the dominant mechanism, or whether other mechanisms might also contribute significantly to bending. Preliminary studies suggest that microtubule polymerization causes bending, even when the plus end is not in contact with the leading edge of the cell. These studies also suggest that unbending, which has not been considered before in the literature, may result from depolymerization and from actomyosin contractility. Mechanical regulation of microtubule dynamics could be a major means of regulating microtubule access to the cortical or peripheral regions of the cell's cytoplasm, which in turn can be a determinant of cell shape and polarity during directed movement or polarized (vectorially directed) cell growth. This project has three specific aims: 1, to understand the mechanochemical basis of microtubule dynamic instability; 2, to understand the mechanisms of microtubule bending and unbending in living cells; and 3, to develop educational and outreach programs in cellular systems biology. These questions will be addressed using an integrated theoretical, computational and experimental approach. The mechanochemical computational modeling will provide specific, quantitative predictions that will be tested directly against experimental results, including GFP fluorescence imaging of single microtubules in living cells and application of controlled forces on the nanonewton scale (using a high precision magnetic bead force application system). This integrated systems approach is necessary in order to deal with the inherent complexity of microtubule dynamics, including both its chemical and mechanical components.Intellectual merit of the proposed activity: this project will advance our understanding of how chemical kinetics, thermodynamics and mechanics interact to mediate microtubule assembly and disassembly, leading to a theoretically based computational framework that can be used to understand how microtubule-associated proteins control microtubule behavior. It will also advance our understanding of how mechanical forces are imposed on and self-generated by microtubules in living cells.Broader impacts resulting from the proposed activity: as part of this project, Dr. Odde will develop a "Collaborative Modeling in Cell Biology Initiative" through which cell biologists will collaborate with with teams of engineering seniors and graduate students in the University of Minnesota BMEn 5351 "Cell Engineering" course who will develop computer simulations of cellular processes. In addition, Dr. Odde will continue to run his successful "Future Faculty Program" for biomedical engineering students from underrepresented groups.
当今生物学的一个主要挑战是整合我们的生物分子知识来解释复杂的细胞行为。这一挑战是科学和工程领域从纳米尺度到微米尺度整合的更广泛挑战的一部分。这种整合的一个主要例子是微管,其纳米尺寸的成分,即α和β微管蛋白单体蛋白的异二聚体,自组装形成直径25纳米、长几微米的管。一旦形成,微管就会介导重要的亚细胞货物的运输,包括线粒体、膜结合的分泌囊泡和其他囊泡以及染色体。 因此,了解微管组装和分解的基本机制对于了解细胞在细胞生长、有丝分裂和对外部信号的反应过程中如何重组其细胞质至关重要。微管表现出一种极不寻常且复杂的自组装行为,称为“动态不稳定性”,其中单个微管在生长和缩短的交替阶段之间随机切换。人们提出了各种理论来解释动态不稳定性的分子起源,但它们都无法解释微管尖端的力学和结构。我们需要的是一个将化学动力学和热力学(与微管蛋白添加或丢失以及 GTP 水解相关)与力学(与微管蛋白构象变化相关)相结合的计算框架。鉴于机械力在微管动力学中的重要性,确定细胞质中微管施加的外力的来源和大小变得至关重要。细胞质中的微管通常是高度弯曲的,并且已经证明肌动球蛋白的收缩性可以引起微管弯曲。然而,尚不清楚这是否是主要机制,或者其他机制是否也可能对弯曲产生重大影响。初步研究表明,即使正端不与细胞前缘接触,微管聚合也会导致弯曲。 这些研究还表明,以前文献中未曾考虑过的不弯曲可能是由解聚和肌动球蛋白收缩性引起的。微管动力学的机械调节可能是调节微管进入细胞质的皮质或外周区域的主要手段,这反过来又可能是定向运动或极化(矢量定向)细胞生长过程中细胞形状和极性的决定因素。 该项目有三个具体目标:1、了解微管动态不稳定性的力化学基础; 2、了解活细胞中微管弯曲和不弯曲的机制; 3、制定细胞系统生物学的教育和推广计划。 这些问题将通过综合理论、计算和实验方法来解决。机械化学计算模型将提供具体的定量预测,这些预测将直接根据实验结果进行测试,包括活细胞中单个微管的 GFP 荧光成像以及在纳牛顿尺度上应用受控力(使用高精度磁珠力应用系统)。为了处理微管动力学的固有复杂性,包括其化学和机械成分,这种集成系统方法是必要的。拟议活动的智力价值:该项目将增进我们对化学动力学、热力学和力学如何相互作用以介导微管组装和拆卸的理解,从而形成一个基于理论的计算框架,可用于理解微管相关蛋白如何控制 微管行为。它还将增进我们对活细胞中微管如何施加机械力以及如何自行产生机械力的理解。拟议活动产生更广泛的影响:作为该项目的一部分,Odde 博士将开发“细胞生物学协作建模计划”,通过该计划,细胞生物学家将与明尼苏达大学 BMEn 5351“细胞工程”课程的工程专业高年级学生和研究生团队合作,他们将开发计算机 细胞过程的模拟。此外,奥德博士将继续为来自弱势群体的生物医学工程学生开展他成功的“未来教师计划”。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Odde其他文献

David Odde的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Odde', 18)}}的其他基金

Micromechanical Engineering of Connectivity in Living Neural Networks
活神经网络连接的微机械工程
  • 批准号:
    0130875
  • 财政年份:
    2002
  • 资助金额:
    $ 52.53万
  • 项目类别:
    Continuing Grant
Biophotonics: Spatially-Controlled Stem Cell Differentiation by Laser-Guided Direct Writing of Bioactive Materials
生物光子学:通过激光引导直接写入生物活性材料来空间控制干细胞分化
  • 批准号:
    0119481
  • 财政年份:
    2001
  • 资助金额:
    $ 52.53万
  • 项目类别:
    Standard Grant
CAREER: Microtubule Severing Mechanisms
职业:微管切断机制
  • 批准号:
    9984955
  • 财政年份:
    2000
  • 资助金额:
    $ 52.53万
  • 项目类别:
    Standard Grant
SGER: Laser-Guided Direct Writing of Multipotent Adult Stem Cells
SGER:激光引导多能成体干细胞直接写入
  • 批准号:
    0092810
  • 财政年份:
    2000
  • 资助金额:
    $ 52.53万
  • 项目类别:
    Standard Grant
Chemical and Mechanical Interactions in Microtubules
微管中的化学和机械相互作用
  • 批准号:
    9710354
  • 财政年份:
    1997
  • 资助金额:
    $ 52.53万
  • 项目类别:
    Standard Grant
Integrated Bioprocess Experiments for the Undergraduate Chemical Engineering Curriculum
化学工程本科生课程综合生物过程实验
  • 批准号:
    9750570
  • 财政年份:
    1997
  • 资助金额:
    $ 52.53万
  • 项目类别:
    Standard Grant

相似海外基金

Extracellular matrix production via microenvironment-driven mechanical interactions in bacterial population
通过细菌群体中微环境驱动的机械相互作用产生细胞外基质
  • 批准号:
    23KJ0327
  • 财政年份:
    2023
  • 资助金额:
    $ 52.53万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Decoding the mechanical interactions between tissue layers sculpting organ shape
解码塑造器官形状的组织层之间的机械相互作用
  • 批准号:
    10572921
  • 财政年份:
    2023
  • 资助金额:
    $ 52.53万
  • 项目类别:
The cooperative relationship between mechanical interactions and extracellular matrix production in a growing bacterial community
不断增长的细菌群落中机械相互作用与细胞外基质产生之间的合作关系
  • 批准号:
    22K20564
  • 财政年份:
    2022
  • 资助金额:
    $ 52.53万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
ERI: Multi-Scale Modeling of Cell-Matrix Mechanical Interactions in Endothelial Cell Network Assembly
ERI:内皮细胞网络组装中细胞-基质机械相互作用的多尺度建模
  • 批准号:
    2138672
  • 财政年份:
    2022
  • 资助金额:
    $ 52.53万
  • 项目类别:
    Standard Grant
Rapid Functional and Mechanical Characterisation of Neutrophil-Bacteria Interactions
中性粒细胞-细菌相互作用的快速功能和机械表征
  • 批准号:
    2744004
  • 财政年份:
    2022
  • 资助金额:
    $ 52.53万
  • 项目类别:
    Studentship
Hierarchical turbulence and mechanical modelling of rotor-airframe interactions
旋翼-机身相互作用的分层湍流和力学建模
  • 批准号:
    2885833
  • 财政年份:
    2022
  • 资助金额:
    $ 52.53万
  • 项目类别:
    Studentship
Micromechanics of Interactions Between Hard Magnetic Particles and Soft Matrix on Magneto-Mechanical Actuation
磁机械驱动中硬磁颗粒与软基体相互作用的微观力学
  • 批准号:
    2142789
  • 财政年份:
    2021
  • 资助金额:
    $ 52.53万
  • 项目类别:
    Standard Grant
Mechanical modulation of particle-cell interactions
粒子-细胞相互作用的机械调节
  • 批准号:
    DP210103079
  • 财政年份:
    2021
  • 资助金额:
    $ 52.53万
  • 项目类别:
    Discovery Projects
CAREER: An Integrated Experimental-Theoretical Framework for Understanding the Multiscale Mechanical Response of Rock-Reactive Brine Interactions
职业:用于理解岩石反应盐水相互作用的多尺度机械响应的综合实验理论框架
  • 批准号:
    2045242
  • 财政年份:
    2021
  • 资助金额:
    $ 52.53万
  • 项目类别:
    Standard Grant
Elucidation of mechanical interactions between plantar fascia and Achilles tendon in humans
阐明人类足底筋膜和跟腱之间的机械相互作用
  • 批准号:
    21K21231
  • 财政年份:
    2021
  • 资助金额:
    $ 52.53万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了