Collaborative Research: Scalable I/O Middleware and File System Optimizations for High-Performance Computing

协作研究:高性能计算的可扩展 I/O 中间件和文件系统优化

基本信息

  • 批准号:
    0621443
  • 负责人:
  • 金额:
    $ 52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-15 至 2012-09-30
  • 项目状态:
    已结题

项目摘要

For data-intensive applications, I/O and storage layers are extremely critical, and are often overlooked, but they become a bottleneck in not only obtaining scalable performance but also in utilization and productivity of systems and application scientists. Along with computational capabilities, scalable software for I/O, and storage for the required capacity and performance must be developed in order to address the data intensive nature of applications and reap benefits in performance and productivity of High End Systems.This proposal entails research and development to address several parallel I/O problems in the HECURA initiative. In particular, the main goals of this proposal are to design and implement novel I/O middleware techniques and optimizations, parallel file system techniques that scale to ultra-scale systems, design and development of techniques that efficiently enable newer APIs including suggested extensions to POSIX for parallelism, and flexible I/O benchmarks that mimic real and dynamic I/O behavior of science and engineering applications. The PIs propose innovative techniques to optimize data accesses that utilize the understanding of high-level access patterns, and use that information through middleware and file systems to enable optimizations. Specifically, the objectives are to (1) design and develop middleware I/O optimizations and cache system that are able to capture small, unaligned, irregular I/O accesses from large number of processors and uses access pattern information to optimize for I/O; (2) incorporate these optimizations in MPICH2's MPI-IO implementation to make them available to a large number of users; (3) design scalable parallel file system techniques and optimizations including a versioning parallel file system, programmable and adaptable consistency semantics, layout optimizations, and self-tuning capabilities; (4) design and evaluate enhanced APIs for file system scalability, particularly for recently proposed enhancements to the POSIX interface (API) to enable highperformance parallel I/O; and (5) develop flexible, execution oriented and scalable I/O benchmarks that mimic the I/O behavior of real science, engineering and bioinformatics applications.
对于数据密集型应用程序,I/O和存储层是非常关键的,并且经常被忽视,但它们不仅成为获得可扩展性能的瓶颈,而且还成为系统和应用科学家利用率和生产力的瓶颈。沿着计算能力,I/O的可扩展软件,以及所需容量和性能的存储必须被开发,以解决应用程序的数据密集性质,并在高端系统的性能和生产力方面获得好处。特别是,这个建议的主要目标是设计和实现新的I/O中间件技术和优化,并行文件系统技术,可扩展到超大规模的系统,设计和开发的技术,有效地使新的API,包括建议的扩展POSIX的并行性,灵活的I/O基准,模仿科学和工程应用程序的真实的和动态的I/O行为。PI提出了利用对高级访问模式的理解来优化数据访问的创新技术,并通过中间件和文件系统使用该信息来实现优化。具体地说,目标是:(1)设计和开发中间件I/O优化和缓存系统,能够捕获来自大量处理器的小的、未对齐的、不规则的I/O访问,并使用访问模式信息来优化I/O;(2)将这些优化结合到MPICH 2的MPI-IO实现中,使它们对大量用户可用;(3)设计可伸缩并行文件系统技术和优化,包括版本化并行文件系统、可编程和自适应一致性语义、布局优化和自调优能力;(4)设计和评估增强的API,以实现文件系统的可扩展性,特别是最近提出的对POSIX接口(API)的增强,以实现高性能并行I/O;以及(5)开发灵活的、面向执行的和可扩展的I/O基准,其模仿真实的科学、工程和生物信息学应用的I/O行为。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alok Choudhary其他文献

MicroProcSim: A Software for Simulation of Microstructure Evolution
  • DOI:
    10.1007/s40192-025-00405-6
  • 发表时间:
    2025-06-23
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Md Maruf Billah;Muhammed Nur Talha Kilic;Md Mahmudul Hasan;Zekeriya Ender Eger;Yuwei Mao;Kewei Wang;Alok Choudhary;Ankit Agrawal;Veera Sundararaghavan;Pınar Acar
  • 通讯作者:
    Pınar Acar
Hybrid-LLM-GNN: integrating large language models and graph neural networks for enhanced materials property prediction
混合大语言模型与图神经网络:集成大语言模型和图神经网络以增强材料性能预测
  • DOI:
    10.1039/d4dd00199k
  • 发表时间:
    2024-12-17
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Youjia Li;Vishu Gupta;Muhammed Nur Talha Kilic;Kamal Choudhary;Daniel Wines;Wei-keng Liao;Alok Choudhary;Ankit Agrawal
  • 通讯作者:
    Ankit Agrawal
A model for managing returns in a circular economy context: A case study from the Indian electronics industry
  • DOI:
    10.1016/j.ijpe.2022.108505
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
    10.000
  • 作者:
    Divya Choudhary;Fahham Hasan Qaiser;Alok Choudhary;Kiran Fernandes
  • 通讯作者:
    Kiran Fernandes
Automated image segmentation for accelerated nanoparticle characterization
  • DOI:
    10.1038/s41598-025-01337-z
  • 发表时间:
    2025-05-17
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Alexandra L. Day;Carolin B. Wahl;Roberto dos Reis;Wei-keng Liao;Youjia Li;Muhammed Nur Talha Kilic;Chad A. Mirkin;Vinayak P. Dravid;Alok Choudhary;Ankit Agrawal
  • 通讯作者:
    Ankit Agrawal
Dys-regulated phosphatidylserine externalization as a cell intrinsic immune escape mechanism in cancer
  • DOI:
    10.1186/s12964-025-02090-6
  • 发表时间:
    2025-03-11
  • 期刊:
  • 影响因子:
    8.900
  • 作者:
    Rachael Pulica;Ahmed Aquib;Christopher Varsanyi;Varsha Gadiyar;Ziren Wang;Trevor Frederick;David C. Calianese;Bhumik Patel;Kenneth Vergel de Dios;Victor Poalasin;Mariana S. De Lorenzo;Sergei V. Kotenko;Yi Wu;Aizen Yang;Alok Choudhary;Ganapathy Sriram;Raymond B. Birge
  • 通讯作者:
    Raymond B. Birge

Alok Choudhary的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alok Choudhary', 18)}}的其他基金

EAGER: XAISE: Explainable Artificial Intelligence for Science and Engineering
EAGER:XAISE:科学与工程领域的可解释人工智能
  • 批准号:
    2331329
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Scalable Algorithms for Spatio-temporal Data Analysis
SHF:中:协作研究:时空数据分析的可扩展算法
  • 批准号:
    1409601
  • 财政年份:
    2014
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
EAGER: Scalable Big Data Analytics
EAGER:可扩展的大数据分析
  • 批准号:
    1343639
  • 财政年份:
    2013
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
EAGER: Discovering Knowledge from Scientific Research Networks
EAGER:从科学研究网络中发现知识
  • 批准号:
    1144061
  • 财政年份:
    2011
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Travel Support for Workshop: Reaching Exascale in this Decade to be Co-Located with International Conference on High-Performance Computing (HiPC 2010)
研讨会差旅支持:在这十年内达到百亿亿次规模,与高性能计算国际会议 (HiPC 2010) 同期举办
  • 批准号:
    1043085
  • 财政年份:
    2010
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: An Application Driven I/O Optimization Approach for PetaScale Systems and Scientific Discoveries
协作研究:针对 PetaScale 系统和科学发现的应用驱动 I/O 优化方法
  • 批准号:
    0938000
  • 财政年份:
    2010
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Climate Change: A Data Driven Approach
合作研究:了解气候变化:数据驱动的方法
  • 批准号:
    1029166
  • 财政年份:
    2010
  • 资助金额:
    $ 52万
  • 项目类别:
    Continuing Grant
Collaborative Research: CT-M: Hardware Containers for Software Components - Detection and Recovery at the Hardware/Software Interface
合作研究:CT-M:软件组件的硬件容器 - 硬件/软件接口的检测和恢复
  • 批准号:
    0830927
  • 财政年份:
    2009
  • 资助金额:
    $ 52万
  • 项目类别:
    Continuing Grant
DC: Medium: Collaborative Research: ELLF: Extensible Language and Library Frameworks for Scalable and Efficient Data-Intensive Applications
DC:媒介:协作研究:ELLF:用于可扩展且高效的数据密集型应用程序的可扩展语言和库框架
  • 批准号:
    0905205
  • 财政年份:
    2009
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Data- and Analytics Driven Fault-tolerance and Resiliency Strategies for Peta-Scale Systems
数据和分析驱动的千万亿级系统容错和弹性策略
  • 批准号:
    0956311
  • 财政年份:
    2009
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315996
  • 财政年份:
    2024
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330195
  • 财政年份:
    2024
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330196
  • 财政年份:
    2024
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2347617
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
  • 批准号:
    2231254
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了