Current Developments in Mathematics Conference

数学会议的最新进展

基本信息

  • 批准号:
    0622667
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-11-01 至 2010-10-31
  • 项目状态:
    已结题

项目摘要

The departments of Harvard and MIT will sponsor an international conference at Harvard for one and a half days. The purpose is to bring excellent speakers to explain the forefront of different fields in mathematical science, which will promote interdisciplinary activities among mathematicians of different fields. This has been an annual event. This year, the following will be speakers: Ken Ribet, who will talk on the works of Chandrashekhar Khare and Jean-Pierre Wintenberger, on the proof of Serre conjecture (1987) in many cases. Serre conjectured that odd irreducible two-dimensional mod p-Galois representations should arise from modular forms. Yakov Sinai will talk on mathematical problems in fluid dynamics, where he will describe the construction of power series solution to the Navier-Stokes equation. Ed Witten will talk on the recent important development of how the Langlands program appears in quantum field theory and how mathematical ideas can come from such interpretations. Terry Tao will talk on his work on harmonic analysis and nonlinear hyperbolic equations. Simon Donaldson or Paul Seidel will talk on recent advances in symplectic geometry.An important component of the conference is to help young post-doctoral fellows and graduate students to come from all over the country and other parts of the world to learn, to communicate and to work with the leaders of the field that attend this conference. Their travel will be covered depending on the extent of the availability of the fund. Minorities are especially encouraged to come. Since the topics cover a wide range from number theory, geometry, topology, algebra, mathematical physics to computing and applied mathematics in general, we expect a great deal of interchange of ideas during the conference. A rather detailed preliminary book will be printed to help the audience understand the lectures. At the end, a book written by the speakers will be published.
哈佛大学和麻省理工学院将在哈佛大学举办为期一天半的国际会议。目的是邀请优秀的演讲者来讲解数学科学不同领域的前沿,促进不同领域数学家之间的跨学科活动。这是一年一度的活动。今年,以下将是演讲者:Ken Ribet,他将讨论Chandrashekhar Khare和Jean-Pierre Wintenberger的作品,在许多情况下证明Serre猜想(1987)。Serre推测奇数不可约的二维模p-伽罗瓦表示应该由模形式产生。Yakov Sinai将讨论流体动力学中的数学问题,他将描述Navier-Stokes方程的幂级数解的构造。Ed Witten将讨论朗兰兹程序在量子场论中出现的最新重要进展,以及数学思想如何从这种解释中产生。Terry Tao将会讲述他在谐波分析和非线性双曲方程方面的工作。Simon Donaldson和Paul Seidel将讨论辛几何的最新进展。会议的一个重要组成部分是帮助来自全国各地和世界其他地区的年轻博士后和研究生与参加会议的领域领导者一起学习,交流和工作。他们的旅费将视基金的可用程度而定。特别鼓励少数民族来。由于主题涵盖范围广泛,从数论、几何、拓扑、代数、数学物理到一般的计算和应用数学,我们期望在会议期间进行大量的思想交流。为了帮助听众理解讲座内容,将印制一本相当详细的入门读物。最后,由主讲人撰写的一本书将会出版。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shing-Tung Yau其他文献

4d N = 2 SCFT and singularity theory Part III: Rigid singularity
4d N = 2 SCFT 和奇点理论第三部分:刚性奇点
A two-phase optimal mass transportation technique for 3D brain tumor detection and segmentation
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
  • 作者:
    Wen-Wei Lin;Tiexiang Li;Tsung-Ming Huang;Jia-Wei Lin;Mei-Heng Yueh;Shing-Tung Yau
  • 通讯作者:
    Shing-Tung Yau
Network modeling and topology of aging
老龄化的网络建模与拓扑结构
  • DOI:
    10.1016/j.physrep.2024.10.006
  • 发表时间:
    2025-01-22
  • 期刊:
  • 影响因子:
    29.500
  • 作者:
    Li Feng;Dengcheng Yang;Sinan Wu;Chengwen Xue;Mengmeng Sang;Xiang Liu;Jincan Che;Jie Wu;Claudia Gragnoli;Christopher Griffin;Chen Wang;Shing-Tung Yau;Rongling Wu
  • 通讯作者:
    Rongling Wu
Higher rank flag sheaves on surfaces
  • DOI:
    10.1007/s40879-024-00752-2
  • 发表时间:
    2024-07-16
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Artan Sheshmani;Shing-Tung Yau
  • 通讯作者:
    Shing-Tung Yau
Heat kernels on forms defined on a subgraph of a complete graph
在完整图的子图上定义的形式上加热内核
  • DOI:
    10.1007/s00208-021-02215-5
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Yong Lin;Sze-Man Ngai;Shing-Tung Yau
  • 通讯作者:
    Shing-Tung Yau

Shing-Tung Yau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shing-Tung Yau', 18)}}的其他基金

Current Developments in Mathematics Conference
数学会议的最新进展
  • 批准号:
    1835084
  • 财政年份:
    2018
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Spectral Interpretations of Essential Subgraphs for Threat Discoveries
ATD:协作研究:威胁发现的基本子图的光谱解释
  • 批准号:
    1737873
  • 财政年份:
    2017
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Analysis, Geometry, and Mathematical Physics
分析、几何和数学物理
  • 批准号:
    1607871
  • 财政年份:
    2016
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Concluding conference of the Special Program on Nonlinear Equations: Progress and Challenges in Nonlinear Equations
非线性方程特别计划闭幕会议:非线性方程的进展与挑战
  • 批准号:
    1600414
  • 财政年份:
    2016
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Current Developments in Mathematics Conference, November 21-22, 2014
数学会议最新进展,2014 年 11 月 21-22 日
  • 批准号:
    1443462
  • 财政年份:
    2014
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Collaborative Research: Geometric Analysis for Computer and Social Networks
协作研究:计算机和社交网络的几何分析
  • 批准号:
    1418252
  • 财政年份:
    2014
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Geometric Structures in Field and String Theory
场论和弦论中的几何结构
  • 批准号:
    1306313
  • 财政年份:
    2013
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Nonlinear Analysis on Sympletic, Complex Manifolds, General Relativity, and Graphs
辛、复流形、广义相对论和图的非线性分析
  • 批准号:
    1308244
  • 财政年份:
    2013
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
FRG Collaborative Research: Generalized Geometry, String Theory and Deformations
FRG 合作研究:广义几何、弦理论和变形
  • 批准号:
    1159412
  • 财政年份:
    2012
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Geometry of Strings and Gravity
弦与重力的几何
  • 批准号:
    0937443
  • 财政年份:
    2010
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant

相似海外基金

Conference: Current Developments in Mathematics
会议:数学的当前发展
  • 批准号:
    1933415
  • 财政年份:
    2019
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Current Developments in Mathematics Conference
数学会议的最新进展
  • 批准号:
    1835084
  • 财政年份:
    2018
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
New developments of the philosophy of mathematics
数学哲学的新发展
  • 批准号:
    17H02263
  • 财政年份:
    2017
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Algebraic geometry and Integrable systems - Deepning of Theory and New Developments in Mathematics and Mathematical Physics -
代数几何与可积系统 - 数学与数学物理理论的深化与新进展 -
  • 批准号:
    17H06127
  • 财政年份:
    2017
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
"Philosophy of Proofs" - Towards New Developments of Philosophy of Logic and Mathematics
《证明哲学》——走向逻辑与数学哲学的新发展
  • 批准号:
    17H02265
  • 财政年份:
    2017
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Developments of the theory and applications of the expected Euler characteristic method and related mathematics
期望欧拉特征法及相关数学的理论与应用进展
  • 批准号:
    16H02792
  • 财政年份:
    2016
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Current Developments in Mathematics Conference, November 21-22, 2014
数学会议最新进展,2014 年 11 月 21-22 日
  • 批准号:
    1443462
  • 财政年份:
    2014
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Formative Assessment in Mathematics: Current Status and Guidelines for Future Developments
数学形成性评估:现状和未来发展指南
  • 批准号:
    1020393
  • 财政年份:
    2010
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Current Developments in Mathematics Conference
数学会议的最新进展
  • 批准号:
    1001688
  • 财政年份:
    2010
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
The Barrett Lectures May, 2001 "New Directions and Developments in Computational Mathematics
巴雷特讲座,2001 年 5 月“计算数学的新方向和发展
  • 批准号:
    0107159
  • 财政年份:
    2001
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了