Nonlinear Analysis on Sympletic, Complex Manifolds, General Relativity, and Graphs
辛、复流形、广义相对论和图的非线性分析
基本信息
- 批准号:1308244
- 负责人:
- 金额:$ 48.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS 1308244, Principal Investigator: Shing-Tung YauThere are several directions that we shall carry out in this proposal. 1. Symplectic geometry and periods of algebraic manifolds: We shall study extensively the new cohomological invariants for symplectic geometry introduced by Tseng and myself, which may be considered as generalization of Bott-Chern cohomology. We shall also study the mirror counterpart of this cohomology and interpret the role of the supersymmetric equations in II A and II B theories in this new cohomology. Many examples will be calculated to support our theory. For deeper understanding of the theory of mirror symmetry, we shall also calculate periods of algebraic manifolds which are not toric. Power method of D-modules will be used. 2. Gromov-Witten invariants and Calabi-Yau manifolds with elliptic vibrations: We shall extend my previous work with Yamaguchi to study the ring of higher loop amplitude in string theory. We shall give more refined structure to this ring and try to construct analogous properties of it that are close to classical automorphic form theory. We also like to understand in a deeper manner the singular structure of the degeneration of elliptic fiber structure of Calabi-Yau manifolds. They have interesting physical meaning. 3. SYZ construction of mirror manifolds: We like to study the affine structure that appears in this construction. Interesting equations will be solved. 4. Construction of balanced metric through understanding of twistor construction: Nonkahler geometry is playing an increasingly important role in string theory. We shall explore such balanced metrics. 5. Quasilocal mass in general relativity: Mu-Tao Wang, Po-Ning Chen, and I will continue to study the important quasilocal mass that Wang and I introduced. We hope to seek the important property of this mass and hopefully use it to study dynamics of Einstein equation. 6. Invariants of graph theory: We are developing intrinsic cohomology theory to directed graphs. We believe that we can construct rich invariant based on our construction.Overall, we are applying geometric methods to solve important questions in new fronts of geometry that are closely related to physics, such as string theory and general relativity. The works on graph theory pioneer a new direction to understand complex networks which have fundamental importance in computer science and other areas of mathematics.
项目编号:DMS 1308244,首席研究员:邱成东。在本课题中,我们将进行几个方向的研究。1. 辛几何与代数流形的周期:我们将广泛研究由Tseng和我提出的辛几何的新的上同调不变量,它可以被认为是bot - chern上同调的推广。我们还研究了这个上同调的镜像对应物,并解释了iia和iib理论中的超对称方程在这个新上同调中的作用。将计算许多例子来支持我们的理论。为了更深入地理解镜像对称理论,我们还将计算非环面代数流形的周期。将使用d模块的功率法。2. 椭圆振动的Gromov-Witten不变量和Calabi-Yau流形:我们将扩展我先前与Yamaguchi的工作来研究弦理论中更高环幅的环。我们将给这个环更精细的结构,并尝试构造它接近经典自同构形式理论的类似性质。我们还想更深入地了解Calabi-Yau流形椭圆纤维结构退化的奇异结构。它们有有趣的物理意义。3. 镜像流形的SYZ构造:我们喜欢研究在这种构造中出现的仿射结构。有趣的方程会被解出来。4. 通过理解扭扭构造构造平衡度规:非卡勒几何在弦理论中扮演着越来越重要的角色。我们将探讨这种平衡的衡量标准。5. 广义相对论中的准局部质量:我和王慕涛、陈宝宁将继续研究我和王慕涛介绍的重要的准局部质量。我们希望找到这个质量的重要性质,并希望用它来研究爱因斯坦方程的动力学。6. 图论的不变量:我们正在发展有向图的内禀上同调理论。我们相信我们可以基于我们的构造构造富不变量。总的来说,我们正在应用几何方法来解决与物理学密切相关的几何新前沿的重要问题,例如弦理论和广义相对论。图论的工作开创了理解复杂网络的新方向,这在计算机科学和其他数学领域具有重要的基础意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shing-Tung Yau其他文献
4d N = 2 SCFT and singularity theory Part III: Rigid singularity
4d N = 2 SCFT 和奇点理论第三部分:刚性奇点
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.5
- 作者:
Bingyi Chen;Dan Xie;Stephen S.-T. Yau;Shing-Tung Yau;Huaiqing Zuo - 通讯作者:
Huaiqing Zuo
A two-phase optimal mass transportation technique for 3D brain tumor detection and segmentation
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Wen-Wei Lin;Tiexiang Li;Tsung-Ming Huang;Jia-Wei Lin;Mei-Heng Yueh;Shing-Tung Yau - 通讯作者:
Shing-Tung Yau
Network modeling and topology of aging
老龄化的网络建模与拓扑结构
- DOI:
10.1016/j.physrep.2024.10.006 - 发表时间:
2025-01-22 - 期刊:
- 影响因子:29.500
- 作者:
Li Feng;Dengcheng Yang;Sinan Wu;Chengwen Xue;Mengmeng Sang;Xiang Liu;Jincan Che;Jie Wu;Claudia Gragnoli;Christopher Griffin;Chen Wang;Shing-Tung Yau;Rongling Wu - 通讯作者:
Rongling Wu
Higher rank flag sheaves on surfaces
- DOI:
10.1007/s40879-024-00752-2 - 发表时间:
2024-07-16 - 期刊:
- 影响因子:0.500
- 作者:
Artan Sheshmani;Shing-Tung Yau - 通讯作者:
Shing-Tung Yau
Heat kernels on forms defined on a subgraph of a complete graph
在完整图的子图上定义的形式上加热内核
- DOI:
10.1007/s00208-021-02215-5 - 发表时间:
2021-06 - 期刊:
- 影响因子:1.4
- 作者:
Yong Lin;Sze-Man Ngai;Shing-Tung Yau - 通讯作者:
Shing-Tung Yau
Shing-Tung Yau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shing-Tung Yau', 18)}}的其他基金
Current Developments in Mathematics Conference
数学会议的最新进展
- 批准号:
1835084 - 财政年份:2018
- 资助金额:
$ 48.46万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Spectral Interpretations of Essential Subgraphs for Threat Discoveries
ATD:协作研究:威胁发现的基本子图的光谱解释
- 批准号:
1737873 - 财政年份:2017
- 资助金额:
$ 48.46万 - 项目类别:
Standard Grant
Analysis, Geometry, and Mathematical Physics
分析、几何和数学物理
- 批准号:
1607871 - 财政年份:2016
- 资助金额:
$ 48.46万 - 项目类别:
Continuing Grant
Concluding conference of the Special Program on Nonlinear Equations: Progress and Challenges in Nonlinear Equations
非线性方程特别计划闭幕会议:非线性方程的进展与挑战
- 批准号:
1600414 - 财政年份:2016
- 资助金额:
$ 48.46万 - 项目类别:
Standard Grant
Current Developments in Mathematics Conference, November 21-22, 2014
数学会议最新进展,2014 年 11 月 21-22 日
- 批准号:
1443462 - 财政年份:2014
- 资助金额:
$ 48.46万 - 项目类别:
Standard Grant
Collaborative Research: Geometric Analysis for Computer and Social Networks
协作研究:计算机和社交网络的几何分析
- 批准号:
1418252 - 财政年份:2014
- 资助金额:
$ 48.46万 - 项目类别:
Standard Grant
Geometric Structures in Field and String Theory
场论和弦论中的几何结构
- 批准号:
1306313 - 财政年份:2013
- 资助金额:
$ 48.46万 - 项目类别:
Continuing Grant
FRG Collaborative Research: Generalized Geometry, String Theory and Deformations
FRG 合作研究:广义几何、弦理论和变形
- 批准号:
1159412 - 财政年份:2012
- 资助金额:
$ 48.46万 - 项目类别:
Standard Grant
Current Developments in Mathematics Conference
数学会议的最新进展
- 批准号:
1001688 - 财政年份:2010
- 资助金额:
$ 48.46万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 48.46万 - 项目类别:
Continuing Grant
Conference: Southern California Geometric Analysis Seminar
会议:南加州几何分析研讨会
- 批准号:
2406732 - 财政年份:2024
- 资助金额:
$ 48.46万 - 项目类别:
Standard Grant
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
- 批准号:
2409989 - 财政年份:2024
- 资助金额:
$ 48.46万 - 项目类别:
Standard Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
- 批准号:
2348238 - 财政年份:2024
- 资助金额:
$ 48.46万 - 项目类别:
Standard Grant
Advances in rational operations in free analysis
自由分析中理性运算的进展
- 批准号:
2348720 - 财政年份:2024
- 资助金额:
$ 48.46万 - 项目类别:
Standard Grant
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
$ 48.46万 - 项目类别:
Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 48.46万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 48.46万 - 项目类别:
Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 48.46万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 48.46万 - 项目类别:
Standard Grant