ATD: Collaborative Research: Spectral Interpretations of Essential Subgraphs for Threat Discoveries

ATD:协作研究:威胁发现的基本子图的光谱解释

基本信息

  • 批准号:
    1737873
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

In the past decade, graph theory has undertaken a remarkable shift --- a profound transformation. Graph theory is no longer limited to a few vertices and edges (as in the famous riddle of "The Seven Bridges of Konigsberg"). Today, graph theory is often about understanding our ever-more connected world, which may contain millions and billions of nodes. Such a change is in large part due to the humongous amount of information present in today's society. For example, successful Web search algorithms are based on WWW graphs, which contain all web pages as vertices and hyperlinks as edges. In other cases, such as social networks, the sheer number of users contribute to the huge size of the graphs representing a particular social medium. In response to challenges set forth in the ATD announcement, this work seeks to develop a framework using advanced tools from random and spectral graph theory to carry out quantitative analyses of the structure and dynamics of large graphs or networks. Here, the focus is on finding patterns that may be hidden in them that could potentially be indicative of emerging threats of various kinds (internets, critical infrastructure networks, financial networks, social networks, etc.)This research plans to use tools from random graph theory, differential geometry, and information theory to carry out analytic computations of observable network structures and capture the most relevant and refined quantities of real-world networks. The approach is based on the Szemeredi regularity lemma, which provides regular partitions of a given graph. If these can be found efficiently, then rapid (and often parallel- and distributed- among partitions) methods to compute a myriad of graph properties of interest, including graph merging and subgraph detection, will be achieved. Unfortunately, the regularity Lemma is only an existence proof; however, it is here, using ideas from spectral graph theory, where computationally efficient and scalable methods to approximate these partitions will be developed. Moreover, to further achieve efficiency, a new model will be developed (based on a stochastic block model) representing information on graphs. The motivation behind this approach is two-fold. First, the most meaningful types of graph operations (graph merging, etc.) tend to preserve such partitions. Second, these blocks (or communities) can further reduce the complexity of finding a particular subgraph (often indicative of emerging threats) in a given graph.
在过去的十年里,图论经历了一个显著的转变-一场深刻的变革。图论不再局限于少数几个顶点和边(如著名的谜语《哥尼斯堡的七座桥》)。今天,图论通常是关于理解我们日益相连的世界,这个世界可能包含数百万和数十亿个节点。这种变化在很大程度上是由于当今社会存在着海量的信息。例如,成功的Web搜索算法是基于WWW图的,该图将所有网页作为顶点,将超链接作为边。在其他情况下,例如社交网络,用户的绝对数量导致了代表特定社交媒体的图表的巨大规模。为了应对ATD公告中提出的挑战,这项工作试图利用随机和谱图理论的先进工具开发一个框架,对大型图形或网络的结构和动态进行量化分析。在这里,重点是寻找可能隐藏在其中的模式,这些模式可能指示各种类型的新兴威胁(互联网、关键基础设施网络、金融网络、社交网络等)。这项研究计划使用随机图理论、微分几何和信息论的工具来对可观察的网络结构进行分析计算,并捕获最相关和最精细的真实网络数量。该方法基于Szmeredi正则性引理,该引理提供了给定图的正则划分。如果能够有效地找到这些属性,那么将实现快速(并且通常是并行的-并且在分区之间分布的)方法来计算无数感兴趣的图的属性,包括图合并和子图检测。不幸的是,正则性引理只是一个存在性证明;然而,正是在这里,使用谱图理论的思想,将开发出计算高效和可扩展的方法来逼近这些划分。此外,为了进一步提高效率,将开发一种新的模型(基于随机块模型)来表示图上的信息。这种做法背后的动机是双重的。首先,最有意义的图形操作类型(图形合并等)倾向于保存这样的分区。其次,这些块(或社区)可以进一步降低在给定图中查找特定子图(通常指示新出现的威胁)的复杂性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shing-Tung Yau其他文献

4d N = 2 SCFT and singularity theory Part III: Rigid singularity
4d N = 2 SCFT 和奇点理论第三部分:刚性奇点
A two-phase optimal mass transportation technique for 3D brain tumor detection and segmentation
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
  • 作者:
    Wen-Wei Lin;Tiexiang Li;Tsung-Ming Huang;Jia-Wei Lin;Mei-Heng Yueh;Shing-Tung Yau
  • 通讯作者:
    Shing-Tung Yau
Network modeling and topology of aging
老龄化的网络建模与拓扑结构
  • DOI:
    10.1016/j.physrep.2024.10.006
  • 发表时间:
    2025-01-22
  • 期刊:
  • 影响因子:
    29.500
  • 作者:
    Li Feng;Dengcheng Yang;Sinan Wu;Chengwen Xue;Mengmeng Sang;Xiang Liu;Jincan Che;Jie Wu;Claudia Gragnoli;Christopher Griffin;Chen Wang;Shing-Tung Yau;Rongling Wu
  • 通讯作者:
    Rongling Wu
Higher rank flag sheaves on surfaces
  • DOI:
    10.1007/s40879-024-00752-2
  • 发表时间:
    2024-07-16
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Artan Sheshmani;Shing-Tung Yau
  • 通讯作者:
    Shing-Tung Yau
Heat kernels on forms defined on a subgraph of a complete graph
在完整图的子图上定义的形式上加热内核
  • DOI:
    10.1007/s00208-021-02215-5
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Yong Lin;Sze-Man Ngai;Shing-Tung Yau
  • 通讯作者:
    Shing-Tung Yau

Shing-Tung Yau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shing-Tung Yau', 18)}}的其他基金

Current Developments in Mathematics Conference
数学会议的最新进展
  • 批准号:
    1835084
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Concluding conference of the Special Program on Nonlinear Equations: Progress and Challenges in Nonlinear Equations
非线性方程特别计划闭幕会议:非线性方程的进展与挑战
  • 批准号:
    1600414
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Analysis, Geometry, and Mathematical Physics
分析、几何和数学物理
  • 批准号:
    1607871
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Current Developments in Mathematics Conference, November 21-22, 2014
数学会议最新进展,2014 年 11 月 21-22 日
  • 批准号:
    1443462
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Geometric Analysis for Computer and Social Networks
协作研究:计算机和社交网络的几何分析
  • 批准号:
    1418252
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Geometric Structures in Field and String Theory
场论和弦论中的几何结构
  • 批准号:
    1306313
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Nonlinear Analysis on Sympletic, Complex Manifolds, General Relativity, and Graphs
辛、复流形、广义相对论和图的非线性分析
  • 批准号:
    1308244
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
FRG Collaborative Research: Generalized Geometry, String Theory and Deformations
FRG 合作研究:广义几何、弦理论和变形
  • 批准号:
    1159412
  • 财政年份:
    2012
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Geometry of Strings and Gravity
弦与重力的几何
  • 批准号:
    0937443
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Current Developments in Mathematics Conference
数学会议的最新进展
  • 批准号:
    1001688
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319370
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319371
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319372
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319551
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220523
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220529
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了