Conference: Current Developments in Mathematics

会议:数学的当前发展

基本信息

  • 批准号:
    1933415
  • 负责人:
  • 金额:
    $ 3.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This award provides support for participants of the "Current Developments in Mathematics" conference to be held November 22-23, 2019 and annually thereafter at the Harvard University Science Center in Cambridge, Massachusetts. The CDM conference is jointly sponsored by Harvard University and the Massachusetts Institute of Technology. Prominent speakers are invited to report on recent breakthroughs in various fields of mathematics. The conference is advertised widely to students and early-career researchers, and provides an excellent opportunity for them to interact with world-leading researchers and with the Boston area mathematics community. More information can be found on the conference website: http://www.math.harvard.edu/cdm/The format of the conference aims to maximize the benefit for a wide range of participants. The speakers are asked to divide their lectures into two parts, one of which is intended to be accessible to a broader audience and giving a general idea of the recent work, while the other part contains more details. The conference can be thus regarded as an intensive two-day colloquium style overview of various exciting developments, providing an opportunity for mathematicians to learn about advances in fields other than their own area of specialization. The results presented at the conference are collected in manuscripts beforehand and are distributed to the participants during the conference. The proceedings are later published.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为将于2019年11月22日至23日在马萨诸塞州剑桥的哈佛大学科学中心举行的“数学当前发展”会议的参与者提供支持。清洁发展机制会议由哈佛大学和马萨诸塞州理工学院联合主办。邀请杰出的演讲者报告数学各个领域的最新突破。该会议是广泛宣传的学生和早期职业研究人员,并为他们提供了一个很好的机会,与世界领先的研究人员和波士顿地区的数学界进行互动。更多信息可以在会议网站上找到:http://www.math.harvard.edu/cdm/The会议的形式旨在最大限度地为广大与会者带来利益。演讲者被要求将他们的演讲分为两部分,其中一部分旨在向更广泛的受众提供近期工作的总体概念,而另一部分则包含更多细节。因此,这次会议可以被视为一个密集的为期两天的座谈会风格的各种令人兴奋的发展概述,为数学家提供了一个机会,了解其他领域的进展比自己的专业领域。在会议上提出的结果事先收集在手稿中,并在会议期间分发给与会者。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Denis Auroux其他文献

Lagrangian Floer theory for trivalent graphs and homological mirror symmetry for curves
  • DOI:
    10.1007/s00029-024-00988-6
  • 发表时间:
    2024-10-22
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Denis Auroux;Alexander I. Efimov;Ludmil Katzarkov
  • 通讯作者:
    Ludmil Katzarkov
Khovanov–Seidel quiver algebras and bordered Floer homology
  • DOI:
    10.1007/s00029-012-0106-2
  • 发表时间:
    2012-10-11
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Denis Auroux;J. Elisenda Grigsby;Stephan M. Wehrli
  • 通讯作者:
    Stephan M. Wehrli
Infinitely many monotone Lagrangian tori in $$\mathbb {R}^6$$
  • DOI:
    10.1007/s00222-014-0561-9
  • 发表时间:
    2014-11-13
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Denis Auroux
  • 通讯作者:
    Denis Auroux

Denis Auroux的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Denis Auroux', 18)}}的其他基金

Partially Wrapped Fukaya Categories and Functoriality in Mirror Symmetry
镜像对称中的部分包裹深谷范畴和函子性
  • 批准号:
    2202984
  • 财政年份:
    2022
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Continuing Grant
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
  • 批准号:
    1937869
  • 财政年份:
    2019
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Continuing Grant
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
  • 批准号:
    1702049
  • 财政年份:
    2017
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Continuing Grant
Lagrangian Floer homology and the geometry of homological mirror symmetry
拉格朗日弗洛尔同调和同调镜像对称的几何
  • 批准号:
    1406274
  • 财政年份:
    2014
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Wall-crossings in Geometry and Physics
FRG:合作研究:几何和物理的跨越
  • 批准号:
    1264662
  • 财政年份:
    2013
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Standard Grant
Floer homology, low-dimensional topology, and mirror symmetry
Florer 同调、低维拓扑和镜像对称
  • 批准号:
    1007177
  • 财政年份:
    2010
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Continuing Grant
FRG Collaborative Research: Homological Mirror Symmetry and its applications
FRG合作研究:同调镜像对称及其应用
  • 批准号:
    0652630
  • 财政年份:
    2007
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Standard Grant
Geometric and Algebraic Structures in the Group of Hamiltonian Diffeomorphisms
哈密​​顿微分同胚群中的几何和代数结构
  • 批准号:
    0706976
  • 财政年份:
    2007
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Standard Grant
Lefschetz fibrations in symplectic topology and applications to mirror symmetry
辛拓扑中的莱夫谢茨纤维及其在镜像对称中的应用
  • 批准号:
    0600148
  • 财政年份:
    2006
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Continuing Grant
Approximately holomorphic techniques and monodromy invariants in symplectic topology
辛拓扑中的近似全纯技术和单向不变量
  • 批准号:
    0244844
  • 财政年份:
    2003
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Continuing Grant

相似海外基金

Developments of reconfigurable quantum superconducting devices based on rotational spin current
基于旋转自旋流的可重构量子超导器件的研究进展
  • 批准号:
    21H05021
  • 财政年份:
    2021
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
CAREER: Current and Future Developments of the Core Model Induction
职业:核心模型归纳的当前和未来发展
  • 批准号:
    1945592
  • 财政年份:
    2020
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Continuing Grant
Current Developments in Mathematics Conference
数学会议的最新进展
  • 批准号:
    1835084
  • 财政年份:
    2018
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Standard Grant
Theoretical research on laser-pulses that change condensed matters, and research on current developments on laser instruments
改变凝聚态物质的激光脉冲理论研究及激光仪器现状研究
  • 批准号:
    16K05049
  • 财政年份:
    2016
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Current Developments in Mathematics Conference, November 21-22, 2014
数学会议最新进展,2014 年 11 月 21-22 日
  • 批准号:
    1443462
  • 财政年份:
    2014
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Standard Grant
Formative Assessment in Mathematics: Current Status and Guidelines for Future Developments
数学形成性评估:现状和未来发展指南
  • 批准号:
    1020393
  • 财政年份:
    2010
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Continuing Grant
Current Developments in Mathematics Conference
数学会议的最新进展
  • 批准号:
    1001688
  • 财政年份:
    2010
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Standard Grant
Research and Developments of fast switching device of millimeter wave for electron cyclotron current drive
电子回旋电流驱动毫米波快速开关器件的研制
  • 批准号:
    22560818
  • 财政年份:
    2010
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Current Developments in Mathematics Conference
数学会议的最新进展
  • 批准号:
    0622667
  • 财政年份:
    2006
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Standard Grant
Research and Developments of High Current Joint with Low Resistance at Cryogenic Temperature
低温低电阻大电流接头的研究与进展
  • 批准号:
    10650297
  • 财政年份:
    1998
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了