Micro-Scale Turbulence Measurements Using a Nano-Scale Thermal Anemometry Probe (NSTAP)
使用纳米级热风速探头 (NSTAP) 进行微尺度湍流测量
基本信息
- 批准号:0625268
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROPOSAL NO.: CTS-0625268PRINCIPAL INVESTIGATOR: ALEXANDER SMITSINSTITUTION: PRINCETON UNIVERSITYMicro-Scale Turbulence Measurements Using a Nano-Scale Thermal Anemometry Probe (NSTAP)This grant will facilitate study of turbulence at small length scales in high Reynolds number flows using a novel instrument developed by the PI. Turbulence at high Reynolds numbers is characteristic of many industrial applications, including pipe flows for transporting oil and gas, aircraft, ships and submarines. These extreme regimes have historically been inaccessible due to the paucity of appropriate experimental facilities and the lack of suitable characterization techniques. However, the combination of state-of-the-art facilities with the recent development of a nanoscale thermal anemometry probe (NSTAP) at Princeton, opens up the opportunity to study these technologically important flows. The research focuses on three unresolved topics in fluid mechanics; the analysis and development of turbulence intensity similarity formulations, the analysis and development of the spectral scaling regions, and the verification of the Kolmogorov turbulence theories. The Superpipe and HRTF facilities developed at Princeton make possible the study of high Reynolds number turbulence, but the spatial resolution of currently available instrumentation is inadequate to study the full range of scales present in the flow. The ability to study turbulence on the small (1-10 micron) size scale is now made possible by the successful development of the NSTAP. The probe consists of a platinum nanowire fabricated using standard nanofabrication techniques. Continued development of the probe, pushes toward even smaller sizes, with the aim of producing and characterizing a wire (10 - 50 nm wide x 1-10 microns long). Such a sensing wire will have the unique capability of measuring fluid flow on spatial and temporal scales two orders of magnitude smaller than can currently be studied with existing instrumentation. The success of this work will have broad implications for researchers in fluid mechanics, leading to an improved understanding of turbulent flows. The approaches in developing NSTAP will also open the door to a deeper understanding of the materials science and physics underlying the formation and response of a free standing metallic nanowire. For instance, this study will generate knowledge on the mechanical and electronic properties metallic nanowires, which may be used in other applications such as on-chip interconnects. Effects such as electromigration, recrystallization, and intrinsic stress evolution that occur due to fabrication techniques and current flow in the wire are important to researchers in other areas and will be examined over the course of this study. This project will greatly benefit from close collaborations among a diverse blend of student and faculty researchers in fluid mechanics and materials science enabling both types of specialists to learn about the other's field. The implementation of the NSTAP for these studies will educate students through the practices of both nanofabrication and turbulence measurements. The research will be readily accessible for undergraduate participation through term projects and summer research experience.
提案编号:CTS-0625268主要研究者:亚历山大·史密斯研究机构:普林斯顿大学使用纳米尺度热风速计探针(NSTAP)进行微尺度湍流测量该资助将促进使用PI开发的新型仪器在高雷诺数流动中进行小长度尺度湍流研究。高雷诺数下的湍流是许多工业应用的特征,包括用于运输石油和天然气的管流、飞机、船舶和潜艇。由于缺乏适当的实验设施和适当的表征技术,这些极端的制度历来是无法接近的。然而,结合国家的最先进的设施与最近开发的纳米热风速仪探头(NSTAP)在普林斯顿大学,开辟了机会,研究这些技术上重要的流量。研究重点是流体力学中三个尚未解决的问题;湍流强度相似性公式的分析和发展,光谱标度区域的分析和发展,以及Kolmogorov湍流理论的验证。 在普林斯顿大学开发的Superpipe和HRTF设备使得高雷诺数湍流的研究成为可能,但是目前可用的仪器的空间分辨率不足以研究流动中存在的全部尺度。由于NSTAP的成功发展,现在有可能在小尺度(1-10微米)上研究湍流。 探针由使用标准纳米纤维技术制造的铂纳米线组成。探针的持续发展,推动了更小的尺寸,目的是生产和表征导线(10 - 50 nm宽x 1-10微米长)。 这种传感线将具有独特的能力,测量流体流量的空间和时间尺度上的两个数量级小于目前可以研究与现有的仪器。 这项工作的成功将对流体力学的研究人员产生广泛的影响,从而提高对湍流的理解。 开发NSTAP的方法也将为更深入地理解独立金属纳米线的形成和响应背后的材料科学和物理学打开大门。例如,这项研究将产生关于金属纳米线的机械和电子特性的知识,这些知识可以用于其他应用,如芯片上的互连。 影响,如电迁移,再结晶,和内在应力的演变,发生由于制造技术和电流在电线是重要的研究人员在其他领域,并将在本研究的过程中进行检查。该项目将极大地受益于流体力学和材料科学领域的学生和教师研究人员之间的密切合作,使这两种类型的专家能够了解对方的领域。NSTAP在这些研究中的实施将通过纳米纤维和湍流测量的实践来教育学生。该研究将通过学期项目和夏季研究经验随时为本科生参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Smits其他文献
Alexander Smits的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Smits', 18)}}的其他基金
Fundamentals of Wall-Bounded Turbulence at Extreme Reynolds Numbers
极端雷诺数下壁面湍流的基本原理
- 批准号:
1064257 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
MRI: Development of NSTAP: Nanoscale Thermal Anemometry Probe
MRI:NSTAP 的开发:纳米级热风速测量探头
- 批准号:
0421147 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Effects of Surface Roughness on Turbulent Pipe Flow
表面粗糙度对湍流管流的影响
- 批准号:
0306691 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Scaling Laws for High Reynolds Number Flows
高雷诺数流动的缩放定律
- 批准号:
9908442 - 财政年份:2000
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Dynamic Control and Parametric Resonance in Hydrodynamic Systems: A Theoretical, Computational and Experimental Investigation
水动力系统中的动态控制和参数共振:理论、计算和实验研究
- 批准号:
9706902 - 财政年份:1997
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Traversing the Gray Zone with Scale-aware Turbulence Closures
通过尺度感知的湍流闭合穿越灰色区域
- 批准号:
2337399 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Study on liquid water content fluctuation in high Reynolds number turbulence with large-scale mixing in convective clouds
对流云大尺度混合高雷诺数湍流中液态水含量波动研究
- 批准号:
23K03686 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: Exploring various subgrid scale turbulence models via convergence analysis, data assimilation and deep learning
LEAPS-MPS:通过收敛分析、数据同化和深度学习探索各种亚网格尺度湍流模型
- 批准号:
2316894 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Asymptotic approximation of the large-scale structure of turbulence in axisymmetric jets: a first principle jet noise prediction method
轴对称射流中湍流大尺度结构的渐近逼近:第一原理射流噪声预测方法
- 批准号:
EP/W01498X/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Reconciling wind tunnel data with real performance: influence of freestream turbulence intensity and large-scale unsteadiness
风洞数据与实际性能的协调:自由流湍流强度和大规模不定常的影响
- 批准号:
2889141 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
ERI: Physical Simulation of Terrain-Induced and Large-Scale Turbulence Effects on the Effectiveness of Wind Mitigation Strategies for Low-Rise Buildings
ERI:地形诱发和大规模湍流对低层建筑防风策略有效性影响的物理模拟
- 批准号:
2317176 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
ERI: Physical Simulation of Terrain-Induced and Large-Scale Turbulence Effects on the Effectiveness of Wind Mitigation Strategies for Low-Rise Buildings
ERI:地形诱发和大规模湍流对低层建筑防风策略有效性影响的物理模拟
- 批准号:
2138414 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Development of a hierarchical scale-adaptive large-eddy simulation method for the study of turbulence
开发用于湍流研究的分层尺度自适应大涡模拟方法
- 批准号:
RGPIN-2022-05155 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
The effect of multi-scale roughness on the structure of atmospheric turbulence
多尺度粗糙度对大气湍流结构的影响
- 批准号:
2599942 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Studentship
Study on the generation mechanism of micro-scale turbulence in Earth's magnetosphere based on high-resolution plasma measurements and innovative analysis methods
基于高分辨率等离子体测量和创新分析方法研究地球磁层微尺度湍流产生机制
- 批准号:
21K03504 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)