Fundamentals of Wall-Bounded Turbulence at Extreme Reynolds Numbers

极端雷诺数下壁面湍流的基本原理

基本信息

  • 批准号:
    1064257
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-03-15 至 2014-02-28
  • 项目状态:
    已结题

项目摘要

1064257SmitsThe understanding of high Reynolds number wall-bounded turbulence is of great fundamental and practical importance, since it is observed in a wide range of flows, including flows over aircraft and ships, flow in pipelines and ducts, and the flow in the Earth's atmosphere. However, most laboratory and computational studies are restricted to relatively low Reynolds numbers, and so one of the most fundamental questions in turbulence is how knowledge gained at low Reynolds number can be extended to high Reynolds numbers. In addition, we now know that different flows can behave differently: pipes, channels, and boundary layers can display significantly different behavior, and so how do we reconcile these different observations?Here, we propose a comprehensive study of turbulence at very high Reynolds numbers in pipe flows and boundary layers, to help answer these questions. We are uniquely positioned to conduct this work because we have flow facilities that can produce very high Reynolds number turbulent flows in pipes and boundary layers, and we have also developed (under previous NSF support) a new probe capable of measuring turbulence with a spatial and temporal resolution about two orders of magnitude smaller than conventional hot wire instrumentation. These tools allows us to study Reynolds numbers are at least an order of magnitude higher than previous laboratory studies were able to achieve under conditions of full spatial and temporal resolution.The intellectual merit of the proposed work rests on the fundamental questions we seek to answer. Specifically, we will use our measurements to answer specific controversies recently discovered regarding the behavior of turbulence at high Reynolds number. For example, observations in turbulent boundary layers show a strong influence of the large-scale turbulence away from the wall on the turbulence near the wall. Observations in turbulent pipe flow do not show this correlation. Understanding the difference is a crucial step in developing near-wall models that are essential for accurate predictions of turbulent flow in industry and other practical applications. Hence the broader impact of the work is primarily to improve our ability to predict and manage high Reynolds turbulent number flows. In this way, we hope to support the design of safer and more efficient aircraft and ships, and provide better models to improve the quality and accuracy of, for example, Global Circulation Models, in addition to helping to design better oil and gas pipeline systems. Furthermore, we will build an aggressive program to use this research work to help educate students in science and engineering, from K-12 to postdoctoral levels, and to distribute the new knowledge as widely as possible through journal publications, conference presentations, and educational materials based on our research experience.
1064257 Smits高雷诺数壁面湍流的理解是非常重要的基础和实际意义,因为它是在广泛的流动,包括飞机和船舶的流动,管道和导管中的流动,以及地球大气中的流动。 然而,大多数实验室和计算研究都局限于相对较低的雷诺数,因此湍流中最基本的问题之一是如何将在低雷诺数下获得的知识扩展到高雷诺数。 此外,我们现在知道,不同的流动可以表现出不同的行为:管道,通道和边界层可以显示出显着不同的行为,那么我们如何协调这些不同的观察结果?在这里,我们提出了一个全面的研究湍流在非常高的雷诺数在管流和边界层,以帮助回答这些问题。 我们独特的定位进行这项工作,因为我们有流动设施,可以产生非常高的雷诺数湍流在管道和边界层,我们还开发了(在以前的NSF支持下)一个新的探头能够测量湍流的空间和时间分辨率约两个数量级小于传统的热线仪器。这些工具使我们能够研究雷诺数是至少一个数量级高于以前的实验室研究能够实现的条件下的完整的空间和时间resolution.The智力价值的拟议工作依赖于我们试图回答的基本问题。具体来说,我们将使用我们的测量来回答最近发现的关于高雷诺数下湍流行为的具体争议。 例如,湍流边界层的观测表明,远离壁面的大尺度湍流对壁面附近的湍流有很强的影响。 在湍流管流中的观测没有显示出这种相关性。 了解这种差异是开发近壁模型的关键一步,近壁模型对于准确预测工业和其他实际应用中的湍流至关重要。 因此,更广泛的影响的工作主要是提高我们的能力,预测和管理高雷诺数湍流。 通过这种方式,我们希望支持更安全、更高效的飞机和船舶的设计,并提供更好的模型来提高全球循环模型等的质量和准确性,同时帮助设计更好的石油和天然气管道系统。 此外,我们将建立一个积极的计划,利用这项研究工作,以帮助教育学生在科学和工程,从K-12到博士后水平,并分发新的知识,尽可能广泛地通过期刊出版物,会议演示文稿和教育材料的基础上,我们的研究经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Smits其他文献

Alexander Smits的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Smits', 18)}}的其他基金

Micro-Scale Turbulence Measurements Using a Nano-Scale Thermal Anemometry Probe (NSTAP)
使用纳米级热风速探头 (NSTAP) 进行微尺度湍流测量
  • 批准号:
    0625268
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
MRI: Development of NSTAP: Nanoscale Thermal Anemometry Probe
MRI:NSTAP 的开发:纳米级热风速测量探头
  • 批准号:
    0421147
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Effects of Surface Roughness on Turbulent Pipe Flow
表面粗糙度对湍流管流的影响
  • 批准号:
    0306691
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Scaling Laws for High Reynolds Number Flows
高雷诺数流动的缩放定律
  • 批准号:
    9908442
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Dynamic Control and Parametric Resonance in Hydrodynamic Systems: A Theoretical, Computational and Experimental Investigation
水动力系统中的动态控制和参数共振:理论、计算和实验研究
  • 批准号:
    9706902
  • 财政年份:
    1997
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

Wall crossing现象和内禀Higgs态
  • 批准号:
    11305125
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An adaptive surface for improved modelling of rough wall bounded turbulence
用于改进粗糙壁边界湍流建模的自适应表面
  • 批准号:
    DP240101743
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
Universality Investigation of Subcritical Turbulent Transition in Wall-bounded Shear Flow and Development of Stochastic Model for Engineering Application
壁面剪切流中亚临界湍流转变的普遍性研究及工程应用随机模型的发展
  • 批准号:
    22KJ2814
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Towards efficient state estimation in wall-bounded flows: hierarchical adjoint data assimilation
实现壁界流中的有效状态估计:分层伴随数据同化
  • 批准号:
    2332057
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Improved computational models for particle transport in turbulent wall-bounded flows
改进的湍流壁面流动中粒子输运的计算模型
  • 批准号:
    RGPIN-2022-04981
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanism and prediction of drag modulation in wall-bounded turbulence by additives
添加剂对壁面湍流阻力调制的机理和预测
  • 批准号:
    22K03917
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Foundational Step Towards the Development of a Predictive Framework for Particle Deposition in Wall-Bounded Turbulent Flows
开发壁面湍流中颗粒沉积预测框架的基础性步骤
  • 批准号:
    2219446
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Establishment of scaling law for wall-bounded turbulence based on dissipation rate measurement
基于耗散率测量的壁面湍流标度律的建立
  • 批准号:
    22H01404
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Smart skin for control of wall-bounded turbulent flows
用于控制壁面湍流的智能蒙皮
  • 批准号:
    RGPIN-2020-07231
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Radioactive Aerosols in Wall-bounded Turbulent Flow
壁面湍流中的放射性气溶胶
  • 批准号:
    2736899
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Deep learning for reduced order modelling of wall bounded, turbulent flows
用于壁面湍流降阶建模的深度学习
  • 批准号:
    2753788
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了