Collaborative Rsearch: Large-Scale Analysis of Sensor Based Geometric Data
协作研究:基于传感器的几何数据的大规模分析
基本信息
- 批准号:0635000
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-03-15 至 2011-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Geometric data derived from sensors is becoming ubiquitous, ranging from temperature and pressure data sampled over wide areas to continuous 3D scans of entire city streets. Although many more examples can be given, the above share the common characteristics that the relevant sensors are geographically dispersed and that the data itself is dynamically generated, often unstructured, highly variable, and possibly massive. The goal of this project is to investigate the intrinsic computational complexity and to develop fundamental algorithms for geometric problems involving such distributed networked spatiotemporal data. Potential applications include analyzing environmental data for ecological forecasting (e.g., predicting bio-diversity), landslide or debris flow prediction over extended areas, mining data on trajectories of vehicles or people for traffic management, detecting similar shapes across geographically separated regions for security or asset tracking, and many others.Traditional geometric algorithms assume that all data is centrally available and that random access to the data is efficient --- assumptions that are clearly violated in the distributed networked setting. A key component of the project is to develop geometric summaries that preserve the essential features and structure of the data and to study the fundamental trade-offs between the relevant parameters, including the size, accuracy, utility, stability, and computational complexity of these summaries. The project builds upon the existing sophisticated techniques such as epsilon-nets and approximations, coresets, discrepancy theory, range searching, persistent homology, surface reconstruction and simplification, kinetic data structures, and others. The research involves developing lightweight distributed and streaming algorithms as well as enhancing the theoretical underpinnings of large-scale sensor networks.
来自传感器的几何数据变得无处不在,从大面积采样的温度和压力数据到整个城市街道的连续3D扫描。 虽然可以给出更多的例子,但上述共享的共同特征是相关传感器在地理上分散,并且数据本身是动态生成的,通常是非结构化的,高度可变的,并且可能是海量的。 这个项目的目标是调查内在的计算复杂性,并制定基本的算法,涉及这种分布式网络时空数据的几何问题。潜在的应用包括分析环境数据进行生态预测(例如,预测生物多样性)、在扩展区域上的滑坡或泥石流预测、挖掘关于车辆或人的轨迹的数据以用于交通管理、检测跨地理上分离的区域的相似形状以用于安全或资产跟踪,传统的几何算法假设所有数据都是集中可用的,并且对数据的随机访问是有效的-这些假设在分布式网络环境中显然是违反的。该项目的一个关键组成部分是开发几何摘要,保留数据的基本特征和结构,并研究相关参数之间的基本权衡,包括这些摘要的大小,准确性,实用性,稳定性和计算复杂性。 该项目建立在现有的复杂技术,如ε-网和近似,coresets,差异理论,范围搜索,持久同源性,表面重建和简化,动力学数据结构等。该研究涉及开发轻量级分布式和流式算法,以及加强大规模传感器网络的理论基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pankaj Agarwal其他文献
AN ACCESS POINT BASED MULTICAST ROUTING MODEL FOR MAXIMUM UTILIZATION OF RESOURCES IN WIRELESS SENSOR NETWORKS
一种基于接入点的多播路由模型,可最大限度地利用无线传感器网络中的资源
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
S. Gaur;Pankaj Agarwal - 通讯作者:
Pankaj Agarwal
Machine Learning Toolbox
- DOI:
10.5121/mlaij.2016.3303 - 发表时间:
2016-09 - 期刊:
- 影响因子:0
- 作者:
Pankaj Agarwal - 通讯作者:
Pankaj Agarwal
Simulation of aggregation in Dictyostelium using the Cell Programming Language
使用细胞编程语言模拟盘基网柄菌的聚集
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Pankaj Agarwal - 通讯作者:
Pankaj Agarwal
Cyclic testing and diagonal strut modelling of different types of masonry infills in reinforced concrete frames designed for modern codes
针对现代规范设计的钢筋混凝土框架中不同类型砌体填充墙的循环试验和对角支撑建模
- DOI:
10.1016/j.engstruct.2024.118695 - 发表时间:
2024-10-15 - 期刊:
- 影响因子:6.400
- 作者:
Zeeshan Manzoor Bhat;Yogendra Singh;Pankaj Agarwal - 通讯作者:
Pankaj Agarwal
Seismic Retrofitting of Structures by Steel Bracings
- DOI:
10.1016/j.proeng.2016.05.166 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:
- 作者:
G. Navya;Pankaj Agarwal - 通讯作者:
Pankaj Agarwal
Pankaj Agarwal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pankaj Agarwal', 18)}}的其他基金
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
- 批准号:
2223870 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
NSF-BSF: AF: Small: Efficient Algorithms for Multi-Robot Multi-Criteria Optimal Motion Planning
NSF-BSF:AF:小型:多机器人多标准最佳运动规划的高效算法
- 批准号:
2007556 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
A New Era for Discrete and Computational Geometry
离散和计算几何的新时代
- 批准号:
1559795 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Algorithmic Foundations for Trajectory Collection Analysis
AF:媒介:协作研究:轨迹收集分析的算法基础
- 批准号:
1513816 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
BSF:201229:Efficient Algorithms for Geometric Optimization
BSF:201229:几何优化的高效算法
- 批准号:
1331133 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
AF:Medium:Collaborative Research: Uncertainty Aware Geometric Computing
AF:中:协作研究:不确定性感知几何计算
- 批准号:
1161359 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Continuing Grant
AF: Large: Collaborative Research: Compact Representations and Efficient Algorithms for Distributed Geometric Data
AF:大型:协作研究:分布式几何数据的紧凑表示和高效算法
- 批准号:
1012254 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
CDI-Type II: Integrating Algorithmic and Stochastic Modeling Techniques for Environmental Prediction
CDI-Type II:集成算法和随机建模技术进行环境预测
- 批准号:
0940671 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Proposal: Motion -- Models, Algorithms, and Complexity
协作提案:运动——模型、算法和复杂性
- 批准号:
0204118 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Rsearch of non-alcoholic steatohepatitis (NASH) targeting small intestinal mucosal homeostasis by drug repositioning.
通过药物重新定位靶向小肠粘膜稳态的非酒精性脂肪性肝炎(NASH)研究。
- 批准号:
23K06294 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rsearch old document of The Kitajima Kokusou family
研究北岛国庄家族的旧资料
- 批准号:
18K00913 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rsearch on ethnic arts in plural societies: Case study of ethnic tourism in Malaysia
多元社会中的民族艺术研究:马来西亚民族旅游案例研究
- 批准号:
17K02117 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Funding Request for Full Application Preparation - Biofuel and Waste-to Fuel for Applied Rsearch and Industry Training
全面申请准备的资金申请 - 用于应用研究和行业培训的生物燃料和废物燃料
- 批准号:
453360-2013 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Technology Access Centre - Letters of Intent
Rsearch on Effective Methods for Visually Impaired Persons to Obtain Visual Information on paintings and Other Artworks to Appreciate Them
视障人士获取绘画及其他艺术品视觉信息进行欣赏的有效方法研究
- 批准号:
25381296 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rsearch for Security Governance on State Failure Issues in Africa
非洲国家失灵问题的安全治理研究
- 批准号:
23530187 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Practical Rsearch in relation to the Elderly People and their Art activities
老年人及其艺术活动的实践研究
- 批准号:
22520160 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Rsearch: SAM'S Contribution to Increased Ocean Heat Content on the Continental Shelf of the Western Antarctic Peninsula
合作研究:SAM 对南极半岛西部大陆架海洋热含量增加的贡献
- 批准号:
0944211 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant