AF:Medium:Collaborative Research: Uncertainty Aware Geometric Computing

AF:中:协作研究:不确定性感知几何计算

基本信息

  • 批准号:
    1161359
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

Most scientific and engineering disciplines today have enormous opportunities for creation of knowledge from massive quantities of data available to them. But the lack of appropriate algorithms and analysis tools for processing, organizing, and querying this data deluge makes this task extremely challenging. A large portion of the data being acquired today has a geometric character, and even non-geometric data are often best analyzed by embedding them in a multi-dimensional feature space and exploiting the geometry of that space. This data is invariably full of noise, inaccuracies, outliers, is often incomplete and approximate, yet most of the existing geometric algorithms are unable to cope with any data uncertainty in relating their output to their input.The project aims to fill this void by investigating uncertainty-aware geometric computing, with an express goal of designing algorithmic techniques and foundations that will help extract ``knowledge'' from large quantities of geometric data in the presence of various non-idealities and uncertainties. It focuses on a number of fundamental geometric problems, all dealing with uncertain data. A unified set of models will be developed for modeling uncertainty that can deal with multiple uncertainty types, and attention will be paid to handling noise/outliers in heterogeneous and dynamic data. Algorithms will be investigated for understanding how input uncertainty carries over to output uncertainty (e.g. by associating a confidence level or likelihood with each output, or computing certain statistics of the output) and how the input uncertainty impacts the quality of the output (e.g. by defining and computing the stability of the output in terms of the input uncertainty). Since exact solutions are likely to be computationally infeasible, the emphasis will be on simple, efficient approximation techniques (e.g. computing a compact, approximate distribution of geometric/topological structures such as Delaunay triangulations and their subcomplexes of uncertain data).A key ingredient of the award is to address a variety of computational issues that arise in the presence of uncertainty using a few key problems, and to develop a core set of techniques that illuminate algorithmic design under uncertainty not only on these key problems but that can also be transferred to other geometric problems, as needed. This research touches upon many topics in theoretical computer science and applied mathematics including discrete and computational geometry, discrete and continuous optimization, estimation theory, and machine learning. This study will strengthen connections of computational geometry with a variety of disciplines, including machine learning, probabilistic databases, statistics, and GIS. Since so many problems require geometric data analysis, the project has the potential of enhancing the capability of various government, commercial, and civic units to make informed decisions that impact the society at large.
今天,大多数科学和工程学科都有巨大的机会从大量可用的数据中创造知识。但是,由于缺乏适当的算法和分析工具来处理、组织和查询这些海量数据,使得这项任务极具挑战性。今天获得的大部分数据都具有几何特征,即使是非几何数据,也通常通过将它们嵌入多维特征空间并利用该空间的几何特性来进行最佳分析。这些数据总是充满了噪音,不准确,异常值,通常是不完整和近似的,然而大多数现有的几何算法无法处理任何数据的不确定性,将它们的输出与输入联系起来。该项目旨在通过研究不确定性感知几何计算来填补这一空白,其明确目标是设计算法技术和基础,帮助在各种非理想性和不确定性存在的情况下从大量几何数据中提取“知识”。它关注一些基本的几何问题,所有这些问题都处理不确定的数据。将开发一套统一的不确定性建模模型,可以处理多种不确定性类型,并将注意处理异构和动态数据中的噪声/异常值。将研究算法,以了解输入不确定性如何传递到输出不确定性(例如,通过将每个输出关联置信度或可能性,或计算输出的某些统计数据)以及输入不确定性如何影响输出的质量(例如,根据输入不确定性定义和计算输出的稳定性)。由于精确的解决方案可能在计算上不可行,因此重点将放在简单,有效的近似技术上(例如计算几何/拓扑结构的紧凑,近似分布,如Delaunay三角剖分及其不确定数据的子复合体)。该奖项的一个关键要素是使用几个关键问题来解决存在不确定性时出现的各种计算问题,并开发一套核心技术,这些技术不仅可以在这些关键问题上阐明不确定性下的算法设计,还可以根据需要转移到其他几何问题上。本研究涉及理论计算机科学和应用数学中的许多主题,包括离散和计算几何、离散和连续优化、估计理论和机器学习。本研究将加强计算几何与各种学科的联系,包括机器学习、概率数据库、统计学和GIS。由于许多问题都需要几何数据分析,因此该项目有可能提高各种政府、商业和公民单位做出影响整个社会的明智决策的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pankaj Agarwal其他文献

AN ACCESS POINT BASED MULTICAST ROUTING MODEL FOR MAXIMUM UTILIZATION OF RESOURCES IN WIRELESS SENSOR NETWORKS
一种基于接入点的多播路由模型,可最大限度地利用无线传感器网络中的资源
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Gaur;Pankaj Agarwal
  • 通讯作者:
    Pankaj Agarwal
Machine Learning Toolbox
  • DOI:
    10.5121/mlaij.2016.3303
  • 发表时间:
    2016-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pankaj Agarwal
  • 通讯作者:
    Pankaj Agarwal
Simulation of aggregation in Dictyostelium using the Cell Programming Language
使用细胞编程语言模拟盘基网柄菌的聚集
  • DOI:
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pankaj Agarwal
  • 通讯作者:
    Pankaj Agarwal
Cyclic testing and diagonal strut modelling of different types of masonry infills in reinforced concrete frames designed for modern codes
针对现代规范设计的钢筋混凝土框架中不同类型砌体填充墙的循环试验和对角支撑建模
  • DOI:
    10.1016/j.engstruct.2024.118695
  • 发表时间:
    2024-10-15
  • 期刊:
  • 影响因子:
    6.400
  • 作者:
    Zeeshan Manzoor Bhat;Yogendra Singh;Pankaj Agarwal
  • 通讯作者:
    Pankaj Agarwal
Seismic Retrofitting of Structures by Steel Bracings
  • DOI:
    10.1016/j.proeng.2016.05.166
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    G. Navya;Pankaj Agarwal
  • 通讯作者:
    Pankaj Agarwal

Pankaj Agarwal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pankaj Agarwal', 18)}}的其他基金

Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
  • 批准号:
    2223870
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NSF-BSF: AF: Small: Efficient Algorithms for Multi-Robot Multi-Criteria Optimal Motion Planning
NSF-BSF:AF:小型:多机器人多标准最佳运动规划的高效算法
  • 批准号:
    2007556
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
A New Era for Discrete and Computational Geometry
离散和计算几何的新时代
  • 批准号:
    1559795
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Algorithmic Foundations for Trajectory Collection Analysis
AF:媒介:协作研究:轨迹收集分析的算法基础
  • 批准号:
    1513816
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
BSF:201229:Efficient Algorithms for Geometric Optimization
BSF:201229:几何优化的高效算法
  • 批准号:
    1331133
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF: Large: Collaborative Research: Compact Representations and Efficient Algorithms for Distributed Geometric Data
AF:大型:协作研究:分布式几何数据的紧凑表示和高效算法
  • 批准号:
    1012254
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CDI-Type II: Integrating Algorithmic and Stochastic Modeling Techniques for Environmental Prediction
CDI-Type II:集成算法和随机建模技术进行环境预测
  • 批准号:
    0940671
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Rsearch: Large-Scale Analysis of Sensor Based Geometric Data
协作研究:基于传感器的几何数据的大规模分析
  • 批准号:
    0635000
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: Motion -- Models, Algorithms, and Complexity
协作提案:运动——模型、算法和复杂性
  • 批准号:
    0204118
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Algorithmic Issues in Modeling Motion
运动建模中的算法问题
  • 批准号:
    0083033
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402852
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402837
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402835
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Adventures in Flatland: Algorithms for Modern Memories
合作研究:AF:媒介:平地历险记:现代记忆算法
  • 批准号:
    2423105
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Sketching for privacy and privacy for sketching
合作研究:AF:中:为隐私而素描和为素描而隐私
  • 批准号:
    2311649
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了