AF: Medium: Collaborative Research: Algorithmic Foundations for Trajectory Collection Analysis
AF:媒介:协作研究:轨迹收集分析的算法基础
基本信息
- 批准号:1513816
- 负责人:
- 金额:$ 53.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project engages experts in computational geometry, optimization, and computer vision from Duke and Stanford to develop a theoretical and algorithmic framework for analyzing large collections of trajectory data from sensors or simulations. Trajectories are functions from a time interval to a multi-dimensional space that arise in the description of any system that evolves over time.Trajectory data is being recorded or inferred from hundreds of millions of sensors nowadays, from traffic monitoring systems and GPS sensors on cell phones to cameras in surveillance systems or those embedded in smart phones, in helmets of soldiers in the field, or in medical devices, as well as from scientific experiments and simulations, such as molecular dynamics computations in biology. Algorithms for trajectory-data analysis can lead to video retrieval systems, activity recognition, facility monitoring and surveillance, medical investigation, traffic navigation aids, military analysis and deployment tools, entertainment, and much more. Many of these application fields intersect areas of national security, as well as domains of broader societal benefit.This project pursues a transformational approach that combines the geometry of individual trajectories with the information that an entire collection of trajectories provides about its members. Emphasis is on simple and fast algorithms that scale well with size and dimension, can handle uncertainty in the data, and accommodate streams of noisy and non-uniformly sampled measurements.The investigators have a long track record of collaboration with applied scientists in many disciplines, and will continue to transfer their new research to these scientific fields through joint publications and research seminars, also in collaboration with several industrial partners. This project will heavily rely on the participation of graduate and undergraduate students. Participating undergraduates will supplement their education with directed projects, software development, and field studies. Data sets used and acquired for this project will be made available to the community through online repositories. Software developed will also be made publicly available.Understanding trajectory data sets, and extracting meaningful information from them, entails many computational challenges. Part of the problem has to do with the huge scale of the available data, which is constantly growing, but there are several others as well. Trajectory data sets are marred by sensing uncertainty and heterogeneity in their quality, format, and temporal support. At the same time, individual trajectories can have complex shapes, and even small nuances can make big differences in their semantics.A major tension in understanding trajectory data is thus between the need to capture the fine details of individual trajectories and the ability to exploit the wisdom of the collection, i.e., to take advantage of the information embedded in a large collection of trajectories but missing in any individual trajectory. This emphasis on the wisdom of the collection is one of the main themes of the project, and leads to a multitude of important problems in computational geometry, combinatorial and numerical optimization, and computer vision. Another theme of the project is to learn and exploit both continuous and discrete modes of variability in trajectory data.Deterministic and probabilistic representations will be developed to summarize collections of trajectories that capture commonalities and differences between them, and efficient algorithms will be designed to compute these representations. Based on these summaries, methods will be developed to estimate a trajectory from a given collection, compare trajectories to each other in the context of a collection, and retrieve trajectories from a collection in response to a query. Trajectory collections will also be used to infer information about the environment and the mobile entities involved in these motions.
该项目吸引了来自杜克和斯坦福大学的计算几何、优化和计算机视觉方面的专家,以开发一个理论和算法框架,用于分析来自传感器或模拟的大量轨迹数据。轨迹是从时间间隔到多维空间的函数,出现在对任何随时间演化的系统的描述中。轨迹数据是从数亿个传感器记录或推断的,从交通监控系统和手机上的GPS传感器到监控系统中的摄像头或嵌入智能手机中的摄像头,到战场士兵头盔或医疗设备中的摄像头,以及科学实验和模拟,如生物学中的分子动力学计算。自动数据分析算法可以用于视频检索系统、活动识别、设施监控和监视、医疗调查、交通导航辅助、军事分析和部署工具、娱乐等等。这些应用领域中的许多都与国家安全领域以及更广泛的社会效益领域交叉。该项目追求一种转换方法,将单个轨迹的几何形状与整个轨迹集合提供的关于其成员的信息相结合。重点是简单而快速的算法,这些算法可以随着尺寸和维度的变化而扩展,可以处理数据中的不确定性,并适应噪声和非均匀采样的测量流。研究人员与许多学科的应用科学家有着长期的合作记录,并将继续通过联合出版物和研究研讨会将他们的新研究转移到这些科学领域,并与多个行业合作伙伴合作。该项目将在很大程度上依赖于研究生和本科生的参与。参与的本科生将通过定向项目,软件开发和实地考察来补充他们的教育。将通过在线储存库向社区提供为该项目使用和获取的数据集。了解轨迹数据集并从中提取有意义的信息,涉及许多计算挑战。部分问题与可用数据的巨大规模有关,这些数据不断增长,但还有其他几个问题。轨迹数据集的质量,格式和时间支持的感知不确定性和异质性的破坏。同时,单个轨迹可以具有复杂的形状,并且即使是微小的细微差别也可以在它们的语义中产生很大的差异。因此,理解轨迹数据的主要矛盾在于捕获单个轨迹的精细细节的需要和利用集合的智慧的能力之间,即,以利用嵌入在大量轨迹集合中但在任何单个轨迹中缺失的信息。这种对集合智慧的强调是该项目的主题之一,并导致了计算几何,组合和数值优化以及计算机视觉中的许多重要问题。该项目的另一个主题是学习和利用轨迹数据中的连续和离散变化模式,将开发确定性和概率表示来总结轨迹集合,以捕捉它们之间的共性和差异,并设计有效的算法来计算这些表示。基于这些总结,将开发方法来估计来自给定集合的轨迹,在集合的上下文中将轨迹彼此进行比较,以及响应于查询从集合中检索轨迹。轨迹收集也将用于推断有关环境和这些运动中涉及的移动的实体的信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pankaj Agarwal其他文献
AN ACCESS POINT BASED MULTICAST ROUTING MODEL FOR MAXIMUM UTILIZATION OF RESOURCES IN WIRELESS SENSOR NETWORKS
一种基于接入点的多播路由模型,可最大限度地利用无线传感器网络中的资源
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
S. Gaur;Pankaj Agarwal - 通讯作者:
Pankaj Agarwal
Machine Learning Toolbox
- DOI:
10.5121/mlaij.2016.3303 - 发表时间:
2016-09 - 期刊:
- 影响因子:0
- 作者:
Pankaj Agarwal - 通讯作者:
Pankaj Agarwal
Simulation of aggregation in Dictyostelium using the Cell Programming Language
使用细胞编程语言模拟盘基网柄菌的聚集
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Pankaj Agarwal - 通讯作者:
Pankaj Agarwal
Cyclic testing and diagonal strut modelling of different types of masonry infills in reinforced concrete frames designed for modern codes
针对现代规范设计的钢筋混凝土框架中不同类型砌体填充墙的循环试验和对角支撑建模
- DOI:
10.1016/j.engstruct.2024.118695 - 发表时间:
2024-10-15 - 期刊:
- 影响因子:6.400
- 作者:
Zeeshan Manzoor Bhat;Yogendra Singh;Pankaj Agarwal - 通讯作者:
Pankaj Agarwal
Seismic Retrofitting of Structures by Steel Bracings
- DOI:
10.1016/j.proeng.2016.05.166 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:
- 作者:
G. Navya;Pankaj Agarwal - 通讯作者:
Pankaj Agarwal
Pankaj Agarwal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pankaj Agarwal', 18)}}的其他基金
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
- 批准号:
2223870 - 财政年份:2022
- 资助金额:
$ 53.91万 - 项目类别:
Standard Grant
NSF-BSF: AF: Small: Efficient Algorithms for Multi-Robot Multi-Criteria Optimal Motion Planning
NSF-BSF:AF:小型:多机器人多标准最佳运动规划的高效算法
- 批准号:
2007556 - 财政年份:2020
- 资助金额:
$ 53.91万 - 项目类别:
Standard Grant
A New Era for Discrete and Computational Geometry
离散和计算几何的新时代
- 批准号:
1559795 - 财政年份:2016
- 资助金额:
$ 53.91万 - 项目类别:
Standard Grant
BSF:201229:Efficient Algorithms for Geometric Optimization
BSF:201229:几何优化的高效算法
- 批准号:
1331133 - 财政年份:2013
- 资助金额:
$ 53.91万 - 项目类别:
Standard Grant
AF:Medium:Collaborative Research: Uncertainty Aware Geometric Computing
AF:中:协作研究:不确定性感知几何计算
- 批准号:
1161359 - 财政年份:2012
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
AF: Large: Collaborative Research: Compact Representations and Efficient Algorithms for Distributed Geometric Data
AF:大型:协作研究:分布式几何数据的紧凑表示和高效算法
- 批准号:
1012254 - 财政年份:2010
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
CDI-Type II: Integrating Algorithmic and Stochastic Modeling Techniques for Environmental Prediction
CDI-Type II:集成算法和随机建模技术进行环境预测
- 批准号:
0940671 - 财政年份:2009
- 资助金额:
$ 53.91万 - 项目类别:
Standard Grant
Collaborative Rsearch: Large-Scale Analysis of Sensor Based Geometric Data
协作研究:基于传感器的几何数据的大规模分析
- 批准号:
0635000 - 财政年份:2007
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
Collaborative Proposal: Motion -- Models, Algorithms, and Complexity
协作提案:运动——模型、算法和复杂性
- 批准号:
0204118 - 财政年份:2002
- 资助金额:
$ 53.91万 - 项目类别:
Standard Grant
Algorithmic Issues in Modeling Motion
运动建模中的算法问题
- 批准号:
0083033 - 财政年份:2000
- 资助金额:
$ 53.91万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402283 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402852 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402284 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402837 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402835 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Adventures in Flatland: Algorithms for Modern Memories
合作研究:AF:媒介:平地历险记:现代记忆算法
- 批准号:
2423105 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Sketching for privacy and privacy for sketching
合作研究:AF:中:为隐私而素描和为素描而隐私
- 批准号:
2311649 - 财政年份:2023
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant