NSF-BSF: AF: Small: Efficient Algorithms for Multi-Robot Multi-Criteria Optimal Motion Planning
NSF-BSF:AF:小型:多机器人多标准最佳运动规划的高效算法
基本信息
- 批准号:2007556
- 负责人:
- 金额:$ 44.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Robotics is widely perceived today as a key component to flexibility and competitiveness in large-scale manufacturing, to enhanced industrial efficiency and safety, and to more precise and effective agriculture, to name just a few reasons why governments, industry, and academia promote robotics. Fleets of robots are being rapidly adopted in logistics, and are expected to become commonplace in other domains such as agriculture, inspection and guarding, and last-mile delivery. Notwithstanding the proliferation of multi-robot systems, the state-of-the-art in efficient motion-planning for teams of robots is rather limited, and is even more limited when one aims to optimize the motion plans. Even modest contributions to optimal multi-robot motion planning can have a tremendous impact in terms of saving energy, reducing costs, improving response in critical situations, increasing productivity and competitiveness. The goal of this project, jointly funded by NSF and US-Israel Binational Science Foundation, is to develop algorithmic foundations for optimal multi-robot motion-planning in a planar continuous domain. The interdisciplinary nature of this project is likely to appeal to a broad set of both graduate and undergraduate students with diverse backgrounds. The material generated from this project will be disseminated through multiple courses, organizing workshops, and developing course materials, surveys, tutorials, and publicly available open-source software.This project advances our understanding of the computational complexity of various multi-robot motion-planning problems by investigating three different classes of problems. First, it investigates optimal motion planning under a simple objective function such as the total length of paths traveled by all robots. Next, it studies optimal motion planning under a more complex objective function that aims to optimize multiple criteria such as the total length of paths and the clearance of the robots. In addition to these so-called "one-shot problems", the project also considers scenarios where a perpetual sequence of motion-planning requests need to be fulfilled, namely new requests appear while the robots in the fleet are already in motion, fulfilling other motion-planning requests. A major thrust of the project is on developing fast, simple, robust approximation algorithms for optimal motion planning. The project combines techniques from discrete and computational geometry, robotics, approximation algorithms, probabilistic techniques, and calculus of variation to investigate optimal motion planning for multi-robot systems. The project goes beyond the traditional worst-case-analysis to understand under what circumstances optimal motion-planning problems are computationally tractable. It will also explore dimension-reduction techniques to circumvent the curse of dimensionality, which arises in the standard analysis of multi-robot systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
今天,机器人技术被广泛认为是大规模制造业灵活性和竞争力的关键组成部分,提高工业效率和安全性,以及更精确和有效的农业,仅举几个政府,工业和学术界推广机器人的原因。机器人车队正在物流中迅速采用,预计将在农业、检查和警卫以及最后一英里交付等其他领域变得司空见惯。 尽管多机器人系统的扩散,国家的最先进的有效的运动规划的机器人团队是相当有限的,甚至更有限,当一个旨在优化运动计划。 即使是对最佳多机器人运动规划的微小贡献,也可以在节省能源、降低成本、改善关键情况下的响应、提高生产力和竞争力方面产生巨大影响。该项目由美国国家科学基金会和美国-以色列两国科学基金会共同资助,旨在为平面连续域中的最佳多机器人运动规划开发算法基础。该项目的跨学科性质可能会吸引具有不同背景的研究生和本科生。该项目产生的材料将通过多个课程,组织研讨会,开发课程材料,调查,教程和公开可用的开源软件进行传播。该项目通过调查三种不同类型的问题,提高了我们对各种多机器人运动规划问题的计算复杂性的理解。首先,它研究了一个简单的目标函数下的最优运动规划,如所有机器人走过的路径的总长度。接下来,它研究了更复杂的目标函数下的最优运动规划,该目标函数旨在优化多个标准,如路径的总长度和机器人的间隙。除了这些所谓的“一次性问题”之外,该项目还考虑了需要满足运动规划请求的永久序列的场景,即当车队中的机器人已经在运动时出现新的请求,以满足其他运动规划请求。该项目的一个主要推力是开发快速,简单,强大的近似算法的最佳运动规划。该项目结合了离散和计算几何,机器人学,近似算法,概率技术和变分法的技术,以研究多机器人系统的最佳运动规划。该项目超越了传统的最坏情况分析,以了解在什么情况下,最佳的运动规划问题是计算处理。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead
- DOI:10.1145/3527614
- 发表时间:2019-03
- 期刊:
- 影响因子:0
- 作者:P. Agarwal;Ravid Cohen;D. Halperin;Wolfgang Mulzer
- 通讯作者:P. Agarwal;Ravid Cohen;D. Halperin;Wolfgang Mulzer
Line Intersection Searching Amid Unit Balls in 3-Space.
在 3 空间中的单位球中搜索线相交。
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Pankaj K. Agarwal;Esther Ezra:
- 通讯作者:Esther Ezra:
Refined hardness of distance-optimal multi-agent path finding
距离最优多智能体寻路的精细化硬度
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Tzvika Geft, Dan Halperin
- 通讯作者:Tzvika Geft, Dan Halperin
All Politics is Local: Redistricting via Local Fairness
所有政治都是地方性的:通过地方公平重新划分选区
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Shao-Heng Ko;Erin Taylor;Pankaj Agarwal;Kamesh Munagala
- 通讯作者:Kamesh Munagala
Shortest Coordinated Motion for Square Robots
方形机器人的最短协调运动
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Guillermo Esteban, Dan Halperin
- 通讯作者:Guillermo Esteban, Dan Halperin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pankaj Agarwal其他文献
AN ACCESS POINT BASED MULTICAST ROUTING MODEL FOR MAXIMUM UTILIZATION OF RESOURCES IN WIRELESS SENSOR NETWORKS
一种基于接入点的多播路由模型,可最大限度地利用无线传感器网络中的资源
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
S. Gaur;Pankaj Agarwal - 通讯作者:
Pankaj Agarwal
Machine Learning Toolbox
- DOI:
10.5121/mlaij.2016.3303 - 发表时间:
2016-09 - 期刊:
- 影响因子:0
- 作者:
Pankaj Agarwal - 通讯作者:
Pankaj Agarwal
Simulation of aggregation in Dictyostelium using the Cell Programming Language
使用细胞编程语言模拟盘基网柄菌的聚集
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Pankaj Agarwal - 通讯作者:
Pankaj Agarwal
Cyclic testing and diagonal strut modelling of different types of masonry infills in reinforced concrete frames designed for modern codes
针对现代规范设计的钢筋混凝土框架中不同类型砌体填充墙的循环试验和对角支撑建模
- DOI:
10.1016/j.engstruct.2024.118695 - 发表时间:
2024-10-15 - 期刊:
- 影响因子:6.400
- 作者:
Zeeshan Manzoor Bhat;Yogendra Singh;Pankaj Agarwal - 通讯作者:
Pankaj Agarwal
Seismic Retrofitting of Structures by Steel Bracings
- DOI:
10.1016/j.proeng.2016.05.166 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:
- 作者:
G. Navya;Pankaj Agarwal - 通讯作者:
Pankaj Agarwal
Pankaj Agarwal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pankaj Agarwal', 18)}}的其他基金
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
- 批准号:
2223870 - 财政年份:2022
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
A New Era for Discrete and Computational Geometry
离散和计算几何的新时代
- 批准号:
1559795 - 财政年份:2016
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Algorithmic Foundations for Trajectory Collection Analysis
AF:媒介:协作研究:轨迹收集分析的算法基础
- 批准号:
1513816 - 财政年份:2015
- 资助金额:
$ 44.98万 - 项目类别:
Continuing Grant
BSF:201229:Efficient Algorithms for Geometric Optimization
BSF:201229:几何优化的高效算法
- 批准号:
1331133 - 财政年份:2013
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
AF:Medium:Collaborative Research: Uncertainty Aware Geometric Computing
AF:中:协作研究:不确定性感知几何计算
- 批准号:
1161359 - 财政年份:2012
- 资助金额:
$ 44.98万 - 项目类别:
Continuing Grant
AF: Large: Collaborative Research: Compact Representations and Efficient Algorithms for Distributed Geometric Data
AF:大型:协作研究:分布式几何数据的紧凑表示和高效算法
- 批准号:
1012254 - 财政年份:2010
- 资助金额:
$ 44.98万 - 项目类别:
Continuing Grant
CDI-Type II: Integrating Algorithmic and Stochastic Modeling Techniques for Environmental Prediction
CDI-Type II:集成算法和随机建模技术进行环境预测
- 批准号:
0940671 - 财政年份:2009
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
Collaborative Rsearch: Large-Scale Analysis of Sensor Based Geometric Data
协作研究:基于传感器的几何数据的大规模分析
- 批准号:
0635000 - 财政年份:2007
- 资助金额:
$ 44.98万 - 项目类别:
Continuing Grant
Collaborative Proposal: Motion -- Models, Algorithms, and Complexity
协作提案:运动——模型、算法和复杂性
- 批准号:
0204118 - 财政年份:2002
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
Algorithmic Issues in Modeling Motion
运动建模中的算法问题
- 批准号:
0083033 - 财政年份:2000
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
相似国自然基金
枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
- 批准号:31871988
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
- 批准号:61774171
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
- 批准号:38870708
- 批准年份:1988
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
NSF-BSF: AF: Small: Algorithmic and Information-Theoretic Challenges in Causal Inference
NSF-BSF:AF:小:因果推理中的算法和信息论挑战
- 批准号:
2321079 - 财政年份:2023
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
NSF-BSF: AF: Small: Advancing Coding Theory Through the Lens of Pseudorandomness
NSF-BSF:AF:小:通过伪随机性的视角推进编码理论
- 批准号:
2231157 - 财政年份:2023
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2247576 - 财政年份:2023
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2247577 - 财政年份:2023
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
NSF-BSF: AF: Small: New directions in geometric traversal theory
NSF-BSF:AF:小:几何遍历理论的新方向
- 批准号:
2317241 - 财政年份:2023
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
NSF-BSF: AF: Small: Parameter-Free Stochastic Optimization via Trajectory Cues
NSF-BSF:AF:小:通过轨迹线索进行无参数随机优化
- 批准号:
2239527 - 财政年份:2023
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
NSF-BSF: AF: Small: Algorithms for Graph-Based Codes
NSF-BSF:AF:小型:基于图形的代码算法
- 批准号:
2133154 - 财政年份:2022
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
NSF-BSF: AF: Small: Algorithmic Persuasion: Re-creating the Success of Mechanism Design
NSF-BSF:AF:小:算法说服:重新创造机制设计的成功
- 批准号:
2303372 - 财政年份:2022
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
NSF-BSF: AF: Collaborative Research: Small: Randomized preconditioning of iterative processes: Theory and practice
NSF-BSF:AF:协作研究:小型:迭代过程的随机预处理:理论与实践
- 批准号:
2209510 - 财政年份:2022
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant