SGER: Statistical Study of Global Climate Change and Sea Level

SGER:全球气候变化和海平面统计研究

基本信息

项目摘要

This statistical study is based on a response probability function technique developed to analyze sonic boom breakage of windows. In the response probability density function technique, the response is framed as the product of random variables. The probability density function of each factor is then examined to see if any simplifications can be made by using the specific characteristics of some types of probability density functions, such as Gaussian or lognormal. The response probability density function technique represents a new approach to the problem of analyzing sea level rise from climate change. In this analysis, the sea level rise is the response to be analyzed. It is expressed as the product of three random variables (1) the tons of greenhouse gas emissions (2) the temperature rise per million tons and (3) the sea level rise per degree of temperature rise. In this study, data are obtained on each of the three random variables and the probability density functions are examined. If these probability density functions lend themselves to simplifications, it will make the problem easier. If not, convolution techniques can be used to find the probabilities. If the response probability density function technique is applicable it will be used to make preliminary estimates of the probabilities of various amounts of sea level rise under global warming scenarios.Broader Impacts: The probabilities of various amounts of sea level rise are key questions in the climate change problem. These questions must be answered in planning appropriate actions. If climate change is to be approached on a cost-benefit basis, then the probabilities must be considered in estimating the expected value of greenhouse gas limitations or coastal adaptations. Improving the estimation of sea level rise probabilities may point out the need for additional observations of key parameters.
这项统计研究是基于一个响应概率函数技术开发来分析音爆破碎的窗口。在响应概率密度函数技术中,响应被框定为随机变量的乘积。然后检查每个因子的概率密度函数,以查看是否可以通过使用某些类型的概率密度函数(例如高斯或对数正态)的特定特性来进行任何简化。响应概率密度函数技术代表了分析气候变化引起的海平面上升问题的一种新方法。在此分析中,海平面上升是要分析的响应。它被表示为三个随机变量的乘积:(1)温室气体排放吨数;(2)每百万吨的温度上升;(3)每升温一度的海平面上升。在这项研究中,数据上获得的三个随机变量和概率密度函数进行了检查。如果这些概率密度函数有助于简化,它将使问题更容易。如果不是,可以使用卷积技术来找到概率。如果响应概率密度函数技术是适用的,它将被用来对全球变暖情景下各种海平面上升量的概率进行初步估计。更广泛的影响:各种海平面上升量的概率是气候变化问题中的关键问题。在规划适当行动时必须回答这些问题。如果要从成本效益的角度来处理气候变化问题,那么在估计温室气体限制或沿海适应措施的预期价值时就必须考虑到这些可能性。改进对海平面上升概率的估计可能会指出需要对关键参数进行更多的观测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Douglas Nychka其他文献

National Center for Atmospheric Research (NCAR)
国家大气研究中心 (NCAR)
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Douglas Nychka;Douglas Nychka
  • 通讯作者:
    Douglas Nychka
Computational and Graphical
计算和图形
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Douglas Nychka;Soutir Bandyopadhyay Assistant Professor b;D. Hammerling;F. Lindgren;Stephan Sain Scientist;Stephan Sain
  • 通讯作者:
    Stephan Sain

Douglas Nychka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Douglas Nychka', 18)}}的其他基金

Collaborative Research: Scalable Statistical Validation and Uncertainty Quantification for Large Spatio-Temporal Datasets
合作研究:大型时空数据集的可扩展统计验证和不确定性量化
  • 批准号:
    1417857
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Development of Bayesian Hierarchical Models to Reconstruct Climate Over the Past Millenium
CMG 合作研究:开发贝叶斯分层模型以重建过去千年的气候
  • 批准号:
    0724828
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A Statistics Program at the National Center for Atmospheric Research
国家大气研究中心的统计项目
  • 批准号:
    0355474
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
University - Industry Cooperative Research Programs in the Mathematical Sciences: Process Design, Modeling and Optimization in Electronics and Health Care Products
数学科学领域的大学-工业合作研究项目:电子和保健产品的工艺设计、建模和优化
  • 批准号:
    9705054
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Estimation and Inference for Noisy Nonlinear Systems
数学科学:噪声非线性系统的估计和推理
  • 批准号:
    9217866
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Applications of Smoothing Splines forInference and Data Analysis
数学科学:平滑样条在推理和数据分析中的应用
  • 批准号:
    8715756
  • 财政年份:
    1988
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Structural statistical learning of heterogeneous preferences for smart energy choices with a case study on coordinated electric vehicle charging
智能能源选择异构偏好的结构统计学习以及协调电动汽车充电的案例研究
  • 批准号:
    2342215
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Study of Human Statistical Biases on Unsupervised Parsing and Language Modeling
无监督句法分析和语言建模的人类统计偏差研究
  • 批准号:
    23KJ0565
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Theoretical study of ion transport in ZIP8 protein based on statistical mechanics theory of liquids
基于液体统计力学理论的ZIP8蛋白离子输运理论研究
  • 批准号:
    23K19236
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Observational entropy and statistical inference: a mathematical study
观察熵和统计推断:数学研究
  • 批准号:
    23K03230
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical Methods and Theory for Predictive Biomarker Study in Clinical Trials via Modeling and Analysis of Covariate Interactions
通过协变量相互作用建模和分析进行临床试验中预测生物标志物研究的统计方法和理论
  • 批准号:
    RGPIN-2018-04462
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Inference for Novel Study Designs
新颖研究设计的统计推断
  • 批准号:
    EP/V049968/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Statistical pangenomics to study the effects of zoonotic exposure on the gut microbiome
统计泛基因组学研究人畜共患病暴露对肠道微生物组的影响
  • 批准号:
    10428940
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
A Statistical Study of Coronal Holes and Active Regions Producing Intense Geomagnetic Storms over Four Solar Cycles
四个太阳周期内产生强烈地磁暴的冕洞和活动区的统计研究
  • 批准号:
    2201767
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
THE CONTRACTOR SHALL MAINTAIN AND SUPPORT STUDY DATA INFRASTRUCTURE, DATA MANAGEMENT AND DATA PREPARATION, AND ADVANCED STATISTICAL AND BIOINFORMATICS
承包商应维护和支持研究数据基础设施、数据管理和数据准备以及高级统计和生物信息学
  • 批准号:
    10710597
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Statistical pangenomics to study the effects of zoonotic exposure on the gut microbiome
统计泛基因组学研究人畜共患病暴露对肠道微生物组的影响
  • 批准号:
    10627876
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了