SGER: Ultra Wideband Time-Variant Matching Networks with Very High Impedance Ratios for Nanoscale Electronics

SGER:用于纳米级电子产品的具有极高阻抗比的超宽带时变匹配网络

基本信息

  • 批准号:
    0638531
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-01 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

Objective: To explore novel RF circuit topologies designed in the time rather than in the frequency domain for achieving very high impedance transformations (200:1) over ultra wide bandwidths (DC-9GHz). The proposed approach will result in circuits that will be instrumental in communication and characterization systems focused on high-impedance RF components including nanoscale FETs and nanomechanical resonators.Intellectual Merit: For over half a century the design of nearly all wireless commercial communication systems has been following two major design conventions: 1) the RF system impedance is set to 50 with a realizable impedance transformation ratio of less than 10:1 due to technological limitations; 2) the bandwidth of the transmitted data is limited to a small fraction of the center frequency, typically less than 10%. Although higher bandwidths are possible, they come at the expense of extra loss and real estate on the chip. Until recently, these limitations have not hindered the implementation of high-performance wireless communication systems because conventional RF devices and the developed predominantly frequency-domain design techniques are well suited for 50 narrowband systems.The advent of nanotechnology, however, has enabled microwave engineers to produce RF devices with drastically different properties that often conflict with conventional design rules. As both active (transistors) and passive (nanomechanical resonators) RF devices are reducing in size by three orders of magnitude from micrometers to nanometers in order to satisfy speed and frequency requirements, their impedances are getting increasing higher and they now reach 1-50k. Moreover, ultra-wideband (UWB) architectures have been relatively recently legalized by the FCC allowing designers to develop significantly simpler receiver architectures. However, the practical difficulties of realizing low-loss and compact ultra-wideband matching networks as well as electronic circuits that produce pulses wider than 5GHz, is currently limiting this technology to the lower UWB band (3.1 -4.8 GHz), leaving the more interesting allowable part of the spectrum (5 -10.6 GHz) unexplored The complete lack of solutions in these areas has made the integration of nanoscale devices to RF systems practically impossible. The exploratory proposed effort is focused on developing revolutionary design techniques to alleviate the above described problems. In particular, we propose to explore novel RF circuit topologies designed in the time rather than in the frequency domain. These topologies are based on time-variant circuits that can be reconfigured and matched to the desired bandwidths. Our preliminary results clearly demonstrate that these concepts results in extremely simple and compact circuits with impedance transformation ratios in excess of 200:1 over a 9GHz bandwidth.Broader Impacts: To the best of the investigators' knowledge this is the first attempt to utilize time variant circuits for wideband RF nanoelectronics. This area is particularly interesting because it brings the promise of significantly faster RF communication systems with major cost and battery-life benefits. Due to their very high impedances, though, RF nanoelectronics have not been utilized in any system architectures so far. The impedance mismatch between them and traditional 50 systems (200:1 to 1000:1) is so high that renders these devices unusable. This exploratory research proposes for the first time a viable solution to this serious problem. If successful, system-level researchers will be capable for the first time to bring the promise of RF nanoelectronics to reality because they will be able to implement nano- amplifiers, mixers, filters and eventually RF front-ends.
目的:探索在超宽带(DC-9GHz)上实现非常高阻抗变换(200:1)的新型射频电路拓扑设计,而不是在频域。所提出的方法将导致电路将有助于通信和表征系统专注于高阻抗射频元件,包括纳米级场效应管和纳米机械谐振器。知识优势:半个多世纪以来,几乎所有无线商业通信系统的设计都遵循两个主要的设计惯例:1)由于技术限制,射频系统阻抗设置为50,可实现的阻抗转换比小于10:1;2)传输数据的带宽被限制在中心频率的一小部分,通常小于10%。虽然更高的带宽是可能的,但它们是以额外的损耗和芯片上的空间为代价的。直到最近,这些限制并没有阻碍高性能无线通信系统的实现,因为传统的射频设备和主要开发的频域设计技术非常适合50窄带系统。然而,纳米技术的出现使微波工程师能够制造出具有截然不同特性的射频器件,而这些特性往往与传统的设计规则相冲突。为了满足速度和频率的要求,有源(晶体管)和无源(纳米机械谐振器)射频器件的尺寸都在从微米缩小到纳米三个数量级,它们的阻抗越来越高,现在达到1-50k。此外,超宽带(UWB)架构最近才被FCC合法化,允许设计人员开发更简单的接收器架构。然而,实现低损耗和紧凑的超宽带匹配网络以及产生比5GHz宽脉冲的电子电路的实际困难,目前将该技术限制在较低的UWB频段(3.1 -4.8 GHz),留下了更有趣的频谱允许部分(5 -10.6 GHz)未被探索。在这些领域完全缺乏解决方案,使得纳米级器件集成到RF系统实际上是不可能的。探索性建议的工作重点是开发革命性的设计技术来缓解上述问题。特别是,我们建议探索在时间而不是频域设计的新型射频电路拓扑。这些拓扑是基于时变电路,可以重新配置和匹配所需的带宽。我们的初步结果清楚地表明,这些概念产生了极其简单和紧凑的电路,阻抗转换比超过200:1,带宽为9GHz。更广泛的影响:据研究人员所知,这是第一次尝试将时变电路用于宽带射频纳米电子学。这个领域特别有趣,因为它带来了显著更快的射频通信系统,并具有主要的成本和电池寿命优势。然而,由于它们的阻抗非常高,射频纳米电子学迄今尚未在任何系统架构中使用。它们与传统50系统(200:1到1000:1)之间的阻抗不匹配是如此之高,以至于这些设备无法使用。这项探索性研究首次为这一严重问题提出了可行的解决方案。如果成功,系统级研究人员将能够首次将射频纳米电子学的前景变为现实,因为他们将能够实现纳米放大器,混频器,滤波器以及最终的射频前端。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dimitrios Peroulis其他文献

Reconfigurable Power Amplifiers for Spectrum Sharing in Arrays
用于阵列中频谱共享的可重新配置功率放大器
Increased-bandwidth, meandering vibration energy harvester
带宽增加、曲折振动能量收集器
High-Reliability Envelope-Based Automatic Modulation Classification Using Deep Learning
使用深度学习的高可靠性基于包络的自动调制分类
Energy efficient collaborative beamforming in wireless sensor networks
无线传感器网络中的节能协作波束形成
Time-Reflection of Microwaves by a Fast Optically-Controlled Time-Boundary
快速光控时间边界的微波时间反射
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas R. Jones;Alexander V. Kildishev;Mordechai Segev;Dimitrios Peroulis
  • 通讯作者:
    Dimitrios Peroulis

Dimitrios Peroulis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dimitrios Peroulis', 18)}}的其他基金

Collaborative Research: SWIFT: LARGE: Broker-Controlled Coexistence of 5G Wireless Artificially Intelligent Power Amplifier Array (AIPAA) with Passive Weather Radiometers
合作研究:SWIFT:大型:经纪人控制的 5G 无线人工智能功率放大器阵列 (AIPAA) 与无源天气辐射计的共存
  • 批准号:
    2030257
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Plasmas for Low Noise Reconfigurable RF Systems
用于低噪声可重构射频系统的等离子体
  • 批准号:
    1619547
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EARS: Spectrally Aware Interference Tolerant RF Nanosystems
EARS:光谱感知抗干扰射频纳米系统
  • 批准号:
    1247893
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Plasma-dynamics in Nano/Micro-Structures for RF to THz Applications
用于射频至太赫兹应用的纳米/微米结构中的等离子体动力学
  • 批准号:
    1202095
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Liquid Radio Frequency Electronics
职业:液体射频电子产品
  • 批准号:
    0747766
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
  • 批准号:
    31471690
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
  • 批准号:
    60976066
  • 批准年份:
    2009
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
  • 批准号:
    2329014
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
  • 批准号:
    2329012
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
  • 批准号:
    2329015
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Measurement of interstellar magnetic field by Zeeman observation using new ultra-wideband and high-sensitivity receiver eQ
使用新型超宽带高灵敏度接收器 eQ 通过塞曼观测测量星际磁场
  • 批准号:
    23H01218
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Ultra Wideband Fall Detection and Prediction Solution for People Living with Dementia
针对痴呆症患者的超宽带跌倒检测和预测解决方案
  • 批准号:
    10760690
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
  • 批准号:
    2329013
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Calibration Techniques for Short-Range Ultra-Wideband Pulsed-Radar Systems
短距离超宽带脉冲雷达系统的校准技术
  • 批准号:
    547551-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
All-Raman optical amplification for next Generation ultra-wideband Optical Networks (ARGON)
用于下一代超宽带光网络 (ARGON) 的全拉曼光放大
  • 批准号:
    EP/V000969/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Ultra-wideband Optical Fibre Transmission Systems
超宽带光纤传输系统
  • 批准号:
    2485936
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Calibration Techniques for Short-Range Ultra-Wideband Pulsed-Radar Systems
短距离超宽带脉冲雷达系统的校准技术
  • 批准号:
    547551-2020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了