CAREER: Using Advanced Statistical Techniques to Decipher the Neural Code

职业:使用先进的统计技术破译神经密码

基本信息

  • 批准号:
    0641912
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary The central problem in systems neuroscience is to understand the neural code, at both large and small physiological scales. Progress has been limited by a lack of sufficiently rich experimental data, a shortage of quantitative techniques to characterize and analyze the data, and an insufficient number of interdisciplinary researchers skilled in both systems neurophysiology and advanced statistical methods. Recent developments open new possibilities for collaborative efforts to tackle these basic problems. First, advances in multi-electrode recordings make it possible to study the simultaneous activity of large ensembles of neurons in a wide variety of experimental settings. Similarly, recent improvements in high-resolution voltage- and calcium-sensitive imaging technology now provide data capable of constraining highly-detailed biophysical models of information processing in single cells. A major bottleneck now is in analyzing and quantitatively understanding this data. Specific methodological advances in four fields are proposed: 1) encoding and decoding information in population spike trains; 2) single spike-train analysis and optimal stimulus design; 3) highly-detailed biophysical models and optimal processing of dendritic imaging data; and 4) information-theoretic analyses of sparse neural data. In each case, the investigator and his research group will develop novel mathematical models and tools for fitting these models directly to the observed data. Computer code implementing these novel techniques will be made publicly available to enhance the infrastructure for research and education. This work will have impact on the burgeoning field of neural prosthetics, which will require substantial improvements in our ability to design signaling interfaces between artificial and real neural tissue. Understanding encoding and decoding in populations of neurons and developing models that allow us to predict the effects of experimental perturbations to their behavior is key to this endeavor. This research on neural coding will also likely lead to mathematical results and statistical techniques which are of independent general interest and utility, with fundamental impacts on information theory, image processing, and optimal filtering and prediction of point processes (which in turn impact hundreds of other disciplines). In addition, the investigator is developing an advanced training course for graduate students and postdocs in statistical neuroscience (the first course of this kind in the world), as well as an introductory undergraduate course. Lecture notes will be made publicly available online and will shape a textbook in progress in advanced neural data analysis. Training opportunities will be pursued at Columbia University (strengthening already close ties with the Department of Statistics and Center for Theoretical Neuroscience) and with collaborators in the U.S. and internationally.
项目摘要 系统神经科学的核心问题是在大的和小的生理尺度上理解神经代码。 由于缺乏足够丰富的实验数据,缺乏定量技术来表征和分析数据,以及缺乏精通系统神经生理学和先进统计方法的跨学科研究人员,进展受到限制。 最近的事态发展为解决这些基本问题的合作努力开辟了新的可能性。首先,多电极记录的进步使得在各种实验环境中研究大量神经元的同时活动成为可能。类似地,高分辨率电压和钙敏感成像技术的最新改进现在提供了能够约束单细胞中信息处理的高度详细的生物物理模型的数据。 现在的一个主要瓶颈是分析和定量地理解这些数据。 提出了四个领域的具体方法学进展:1)编码和解码群体锋电位序列中的信息; 2)单个锋电位序列分析和最佳刺激设计; 3)高度详细的生物物理模型和树突成像数据的最佳处理;和4)稀疏神经数据的信息理论分析。 在每种情况下,研究人员和他的研究小组将开发新的数学模型和工具,用于将这些模型直接拟合到观察到的数据。 实现这些新技术的计算机代码将公开提供,以加强研究和教育的基础设施。 这项工作将对新兴的神经修复领域产生影响,这将需要我们在设计人造和真实的神经组织之间的信号接口方面的能力得到实质性的提高。 理解神经元群体中的编码和解码,并开发模型,使我们能够预测实验扰动对其行为的影响,这是这项奋进的关键。 对神经编码的研究也可能导致数学结果和统计技术,这些结果和技术具有独立的普遍兴趣和实用性,对信息论,图像处理以及点过程的最佳滤波和预测产生根本影响(这反过来又影响了数百个其他学科)。 此外,研究员正在为统计神经科学的研究生和博士后编制高级培训课程(世界上第一个此类课程),以及本科生入门课程。课堂讲稿将在网上公开,并将形成一本先进的神经数据分析的教科书。培训机会将在哥伦比亚大学(加强与统计系和理论神经科学中心的密切联系)以及美国和国际合作者中进行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liam Paninski其他文献

Reinforcement Learning Recruits Somata and Apical Dendrites across Layers of Primary Sensory Cortex
  • DOI:
    10.1016/j.celrep.2019.01.093
  • 发表时间:
    2019-02-19
  • 期刊:
  • 影响因子:
  • 作者:
    Clay O. Lacefield;Eftychios A. Pnevmatikakis;Liam Paninski;Randy M. Bruno
  • 通讯作者:
    Randy M. Bruno
Coordination and persistence of aggressive visual communication in Siamese fighting fish
暹罗斗鱼攻击性视觉交流中的协调性和持久性
  • DOI:
    10.1016/j.celrep.2024.115208
  • 发表时间:
    2025-01-28
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Claire P. Everett;Amy L. Norovich;Jessica E. Burke;Matthew R. Whiteway;Paula R. Villamayor;Pei-Yin Shih;Yuyang Zhu;Liam Paninski;Andres Bendesky
  • 通讯作者:
    Andres Bendesky
Maximum Likelihood Inference of Neuronal Dynamics under Noisy and Intermittent Observations using Sequential Monte Carlo EM Algorithms
使用顺序蒙特卡罗 EM 算法在噪声和间歇观察下神经元动力学的最大似然推断
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joshua T. Vogelstein;Kechen Zhang;Bruno;Jedynak;Liam Paninski
  • 通讯作者:
    Liam Paninski

Liam Paninski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liam Paninski', 18)}}的其他基金

CRCNS: Collaborative Research: Naturalistic computation and signaling by neural populations in the primate retina
CRCNS:协作研究:灵长类视网膜神经群的自然计算和信号传导
  • 批准号:
    1430239
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Optical reconstruction of cortical connectivity
皮质连接的光学重建
  • 批准号:
    0904353
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Elucidating the Formation and Evolution of Metastable Phases in Fluorite-Structured Ferroelectrics using Advanced Electron Microscopy
职业:使用先进电子显微镜阐明萤石结构铁电体中亚稳相的形成和演化
  • 批准号:
    2338558
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Using Advanced Organizational Technology to Communicate Compassionately
职业:使用先进的组织技术进行富有同情心的沟通
  • 批准号:
    2144853
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Understanding degradation mechanisms in sustainable energy electrochemical systems using advanced characterization approaches
职业:使用先进的表征方法了解可持续能源电化学系统的降解机制
  • 批准号:
    2046060
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Advanced data analytics for early detection of Alzheimer's disease using wearables and smartphone
职业:使用可穿戴设备和智能手机进行高级数据分析,以早期检测阿尔茨海默病
  • 批准号:
    1942669
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Advancing the Development of Realistic and Probabilistic Shear Wave Velocity Ground Profiles Using Advanced Inversion Strategies
职业:利用先进的反演策略推进现实和概率横波速度地面剖面的开发
  • 批准号:
    1943113
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Advanced Subsurface Imaging Across USArray and Intermountain Seismic Belt Using Dense Seismic Arrays
职业:使用密集地震阵列对 USArray 和山间地震带进行先进的地下成像
  • 批准号:
    1753362
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Understanding the thermodynamics of crystalline materials using advanced molecular simulation sampling methods
职业:使用先进的分子模拟采样方法了解晶体材料的热力学
  • 批准号:
    1639105
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER/CDS&E: Advanced, 3D Infrastructure Information Modeling Using Lidar
职业/CDS
  • 批准号:
    1351487
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Understanding the thermodynamics of crystalline materials using advanced molecular simulation sampling methods
职业:使用先进的分子模拟采样方法了解晶体材料的热力学
  • 批准号:
    1351635
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Advanced Devices and Testing using Organic Field Effect Transistors
职业:使用有机场效应晶体管的先进设备和测试
  • 批准号:
    0644656
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了