CAREER: Modeling Data Locality For Next Generation Systems

职业:为下一代系统建模数据局部性

基本信息

  • 批准号:
    0643664
  • 负责人:
  • 金额:
    $ 31.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-04-15 至 2015-03-31
  • 项目状态:
    已结题

项目摘要

Although the introduction of multi-core systems has increased overall processor speed without significantly increasing CPU clock rates, a significant speed disparity remains between the CPU core and main memory. Multi-level caches have long been used to bridge this gap. Conventional cache design favors applications with good locality. The community's understanding of locality, however, is more qualitative than quantitative. A quantitative understanding of locality is essential to exploit memory hierarchy and achieve maximal performance. The new generation of multi-core systems adds the challenge of quantifying data locality for multi-threaded programs.This research models data locality as a function of three parameters: data size, path history, and thread count, relying on close cooperation among the compiler, the profiler, and hardware just-in-time monitoring. The compiler provides a global view of the program. The profiler, using traces, has a view of the run-time behavior of a program, but this view is based on only a limited number of training inputs. Although the hardware's view is run specific, its prediction, often depending on hardware buffers, is not always effective due to buffer size limitations. The cooperative model being developed combines the advantages of static analysis and run-time sampling and profiling, providing an accurate view of program locality for both single-threaded and multi-threaded programs. Given this model the project explores memory system performance including managing data movement in conventional multi-level cache as well as non-uniform cache architecture (NUCA) caches, reducing the memory traffic of a state-of-the-art hardware-only region prefetcher, and improving spatial locality of Java programs.
虽然多核系统的引入提高了整体处理器速度,但没有显著提高CPU时钟速率,但CPU内核和主存之间仍然存在显著的速度差距。多级缓存长期以来一直被用来弥补这一差距。传统的缓存设计有利于具有良好局部性的应用程序。 然而,社区对地方性的理解更多的是定性而不是定量。 对局部性的定量理解是利用存储层次结构和实现最大性能的必要条件。 新一代多核系统增加了量化多线程程序数据局部性的挑战,本研究将数据局部性建模为三个参数的函数:数据大小、路径历史和线程数,依赖于编译器、分析器和硬件实时监控之间的密切合作。 编译器提供程序的全局视图。使用跟踪的分析器具有程序的运行时行为的视图,但是该视图仅基于有限数量的训练输入。虽然硬件的视图是运行特定的,但由于缓冲区大小的限制,其预测通常取决于硬件缓冲区,并不总是有效的。 正在开发的合作模型结合了静态分析和运行时采样和分析的优点,提供了一个准确的视图的程序本地单线程和多线程程序。 鉴于此模型,该项目探讨了内存系统的性能,包括管理传统的多级缓存以及非均匀缓存架构(NUCA)缓存中的数据移动,减少最先进的硬件区域预取器的内存流量,并提高Java程序的空间局部性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhenlin Wang其他文献

Eosinophil extracellular traps in eosinophilic chronic rhinosinusitis induce Charcot–Leyden crystal formation and eosinophil recruitment
嗜酸性粒细胞慢性鼻窦炎中的嗜酸性粒细胞胞外陷阱诱导夏科-莱登晶体形成和嗜酸性粒细胞募集
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Siyuan Zhang;Zhenlin Wang
  • 通讯作者:
    Zhenlin Wang
Higher-order quantum spin Hall effect in a photonic crystal
光子晶体中的高阶量子自旋霍尔效应
  • DOI:
    10.1038/s41467-020-17593-8
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Biye Xie;Guangxu Su;Hong-Fei Wang;Feng Liu;Lumang Hu;Si-Yuan Yu;Peng Zhan;Ming-Hui Lu;Zhenlin Wang;Yan-Feng Chen
  • 通讯作者:
    Yan-Feng Chen
Nonreciprocal Isolation and Wavelength Conversion via a Spatiotemporally Engineered Cascaded Cavity
通过时空工程级联腔进行不可逆隔离和波长转换
  • DOI:
    10.1103/physrevapplied.13.044037
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Xingping Zhou;Samit Kumar Gupta;Xueyi Zhu;Guangxu Su;Peng Zhan;Yongmin Liu;Zhuo Chen;Minghui Lu;Zhenlin Wang
  • 通讯作者:
    Zhenlin Wang
Tunable hyperbolic metamaterial cavity towards few exciton strong coupling
面向少激子强耦合的可调谐双曲超材料腔
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Fan;Wenyang Wu;Wenbo Zang;Zhuo Chen;Zhenlin Wang
  • 通讯作者:
    Zhenlin Wang
A novel extraperitoneal approach exploration for the treatment of urachal mass: a retrospective observational single-center study
治疗脐尿管肿块的新型腹膜外入路探索:一项回顾性观察性单中心研究
  • DOI:
    10.1097/jcma.0000000000000834
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Yuanming Sui;Z. Zhang;Kai Zhao;Yulian Zhang;Zhenlin Wang;Guanqun Zhu;Han Yang;Xueyu Li;Qinglei Wang;Xinbao Yin;Ke Wang
  • 通讯作者:
    Ke Wang

Zhenlin Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhenlin Wang', 18)}}的其他基金

CSR: Small: Effective Sampling-based Miss Ratio Curves: Theory and Practice
CSR:小:基于有效采样的遗漏率曲线:理论与实践
  • 批准号:
    1618384
  • 财政年份:
    2016
  • 资助金额:
    $ 31.7万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Integrating geophysical data and hydrologic modeling to quantify subsurface water storage along elevation gradients in mountainous terrains
职业:整合地球物理数据和水文模型,量化山区沿海拔梯度的地下水储存量
  • 批准号:
    2337881
  • 财政年份:
    2024
  • 资助金额:
    $ 31.7万
  • 项目类别:
    Continuing Grant
CAREER: Causal Modeling for Data Quality and Bias Mitigation
职业:数据质量和偏差缓解的因果建模
  • 批准号:
    2340124
  • 财政年份:
    2024
  • 资助金额:
    $ 31.7万
  • 项目类别:
    Continuing Grant
CAREER: Mathematical Modeling from Data to Insights and Beyond
职业:从数据到见解及其他的数学建模
  • 批准号:
    2414705
  • 财政年份:
    2024
  • 资助金额:
    $ 31.7万
  • 项目类别:
    Continuing Grant
CAREER: Data-driven Multiscale Modeling of Complex Traffic Systems Utilizing Networked Driving Simulators
职业:利用网络驾驶模拟器对复杂交通系统进行数据驱动的多尺度建模
  • 批准号:
    2238359
  • 财政年份:
    2023
  • 资助金额:
    $ 31.7万
  • 项目类别:
    Standard Grant
CAREER: Algorithmic Aspects of Pan-genomic Data Modeling, Indexing and Querying
职业:泛基因组数据建模、索引和查询的算法方面
  • 批准号:
    2316691
  • 财政年份:
    2023
  • 资助金额:
    $ 31.7万
  • 项目类别:
    Continuing Grant
CAREER: Exploring and Exploiting Data-Centric Modeling for Fairness in Machine Learning
职业:探索和利用以数据为中心的建模以实现机器学习的公平性
  • 批准号:
    2239257
  • 财政年份:
    2023
  • 资助金额:
    $ 31.7万
  • 项目类别:
    Continuing Grant
CAREER: Data-Driven Systematic Hierarchical Modeling
职业:数据驱动的系统分层建模
  • 批准号:
    2410514
  • 财政年份:
    2023
  • 资助金额:
    $ 31.7万
  • 项目类别:
    Standard Grant
CAREER: Towards Data-Driven and Field-Validated Microgrid Modeling and Analysis Techniques
职业:迈向数据驱动和现场验证的微电网建模和分析技术
  • 批准号:
    2237886
  • 财政年份:
    2023
  • 资助金额:
    $ 31.7万
  • 项目类别:
    Continuing Grant
CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.
职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。
  • 批准号:
    2309483
  • 财政年份:
    2022
  • 资助金额:
    $ 31.7万
  • 项目类别:
    Standard Grant
CAREER: Fundamentals of Modeling Deformation Twinning in Polycrystalline Materials Driven by Diffraction-Based Micromechanical Data
职业:基于衍射的微机械数据驱动的多晶材料变形孪生建模基础
  • 批准号:
    2143808
  • 财政年份:
    2022
  • 资助金额:
    $ 31.7万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了