CAREER: Geometric Singularities in Engineering Design and Manufacturing: A Generic Spacetime Approach

职业:工程设计和制造中的几何奇点:通用时空方法

基本信息

  • 批准号:
    0644769
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

The research objective of this Early Faculty Career Development (CAREER) award is to develop a generic theoretical framework and computational algorithms for predicting, quantifying, and correcting potential malfunctions induced by geometric singularities, such as undesired loss of contact or changes in the prescribed motion of moving bodies in the presence of uncertainty. The research takes a new approach to the characterization of geometric singularities in the envelopes of families of both rigid and non-rigid moving shapes by reframing the problem in terms of the so-called "fold points" and "fold regions" in the neighborhood of these singularities. Based on this duality, the problem of detecting geometric singularities is recast into Point Membership Classification tests in the original d-dimensional Euclidean space, eliminating the need for envelope computations. In turn, this will result in improved detection and corrective capabilities of such potential failures. If successful, the results of this research will advance the state of the art in computer aided manufacturing, path planning, and geometric modeling by providing algorithms which will, for example, significantly improve on-line testing of tool paths and CNC codes for arbitrarily complex shapes and motions that will reduce under- or over-cutting in machining, improved swept volume calculations and improved collision detection. New curriculum will be developed and integrated into the mechanical engineering program. Outreach to an all women's college to encourage and actively recruit female students into mechanical engineering and collaboration with a successful existing K-12 outreach program will be performed as part of this project.
这个早期教师职业发展(CAREER)奖的研究目标是开发一个通用的理论框架和计算算法,用于预测,量化和纠正由几何奇点引起的潜在故障,例如不希望的接触损失或在存在不确定性的情况下移动物体的规定运动的变化。该研究采取了一种新的方法来表征的几何奇点在家庭的刚性和非刚性的移动形状的包络线,通过重新定义的问题,在所谓的“折叠点”和“折叠区域”在这些奇点附近。基于这种对偶性,检测几何奇异性的问题被重新转换为原始d维欧氏空间中的点隶属分类测试,从而消除了对包络计算的需要。反过来,这将导致这种潜在故障的改进的检测和校正能力。如果成功的话,这项研究的结果将推进最先进的计算机辅助制造,路径规划和几何建模提供的算法,这将,例如,显着提高在线测试的工具路径和数控代码的任意复杂的形状和运动,将减少下或过切削加工,提高扫描体积计算和改进的碰撞检测。新的课程将被开发和整合到机械工程计划。作为该项目的一部分,将与一所女子学院进行外联,鼓励和积极招收女学生进入机械工程,并与现有的一个成功的K-12外联方案合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Horea Ilies其他文献

On the connectedness of the topology optimization predictors
拓扑优化预测器的连通性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohammad Mahdi Behzadi;Horea Ilies
  • 通讯作者:
    Horea Ilies

Horea Ilies的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Horea Ilies', 18)}}的其他基金

A Universal Framework for Geometric Information in Product Development
产品开发中几何信息的通用框架
  • 批准号:
    2312175
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EAGER: FINDFabs: Searching The Universe of Manufactured Parts Through Proxy Geometric Representations
EAGER:FINDFabs:通过代理几何表示搜索制造零件的宇宙
  • 批准号:
    2232612
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Systematic Design, Analysis and Control of Manufacturable Nano Machines
可制造纳米机器的系统设计、分析和控制
  • 批准号:
    1635103
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CHS: Small: Interactive Haptic Assembly and Docking for 3D Shapes
CHS:小型:3D 形状的交互式触觉组装和对接
  • 批准号:
    1526249
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Theoretical Foundations and Algorithms for Geometric Interfaceability in Virtual Product Development
虚拟产品开发中几何接口性的理论基础和算法
  • 批准号:
    1462759
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Medial Zones: Foundations and Engineering Applications
内侧区域:基础和工程应用
  • 批准号:
    1200089
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Geometric Skeletons for Topologically Evolving Domains
拓扑演化域的几何骨架
  • 批准号:
    0927105
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
MRI: Development of a Gesture Based Virtual Reality System for Research in Virtual Worlds
MRI:开发基于手势的虚拟现实系统,用于虚拟世界的研究
  • 批准号:
    0923158
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
COGEM: Constrained Geometric Morphing of Product Families in Mechanical Design
COGEM:机械设计中产品系列的约束几何变形
  • 批准号:
    0555937
  • 财政年份:
    2006
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Extending the geometric theory of discrete Painleve equations - singularities, entropy and integrability
扩展离散 Painleve 方程的几何理论 - 奇点、熵和可积性
  • 批准号:
    22KF0073
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Singularities and rigidity in geometric evolution equations
几何演化方程中的奇异性和刚性
  • 批准号:
    2304684
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
  • 批准号:
    RGPIN-2019-03933
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis on singularities of higher order geometric gradient flows
高阶几何梯度流的奇点分析
  • 批准号:
    21H00990
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
  • 批准号:
    RGPIN-2019-03933
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Ancient Solutions and Singularities in Geometric Flows
几何流中的古代解和奇点
  • 批准号:
    2105508
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
The structure of singularities in geometric flows
几何流中奇点的结构
  • 批准号:
    DE200101834
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Early Career Researcher Award
Dynamics and Singularities of Geometric Flows
几何流的动力学和奇点
  • 批准号:
    2005345
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Geometric equivalence among singularities and its applications
奇点间的几何等价及其应用
  • 批准号:
    20K03599
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
  • 批准号:
    RGPIN-2019-03933
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了