Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
基本信息
- 批准号:RGPIN-2019-03933
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research is in higher dimensional geometry inspired by theoretical physics. Since Einstein's work in 1915, physicists have been searching for a theory that mathematically unifies gravity with quantum mechanics. A promising candidate is M-theory, that describes the universe using a 7-dimensional shape that is curved in a special way. Such shapes are called G2 manifolds. For the physical theory to be consistent with reality we need these G2 manifolds to have certain cone-like points. These are called G2 conifolds. Although we know thousands of examples of smooth G2 manifolds (without cone-like points), there is still no proof that proper G2 conifolds really exist. They definitely are expected to exist in abundance, both from physical arguments and rigorous mathematical work of myself and Lotay. The long-term goal is to understand the properties and structure of G2 manifolds as well as we understand Calabi-Yau manifolds, which are 6-dimensional shapes with similar properties that are much better understood. Both objects are candidates for grand unified theories in physics. Mathematically, G2 manifolds are very interesting because although they share many common properties with Calabi-Yau manifolds, for technical reasons G2 manifolds cannot be studied using the same tools that have been successful for Calabi-Yau manifolds, namely classical algebraic geometry. This is because, rather than being locally modelled by the complex numbers as are the Calabi-Yau manifolds, the G2 manifolds are instead locally modelled by an exceptional number system that can exist only in 7 dimensions. Because classical tools are not available, we must instead study G2 manifolds using methods of analysis, such as nonlinear partial differential equations. It is precisely for this reason that the mathematical analysis of G2 manifolds and G2 conifolds is so technically difficult. One objective of my research is to construct the first ever examples of G2 conifolds, providing rigorous proof of their existence. This is a very important problem to solve, as it would give mathematical justification for the feasibility of M-theory as a model of our physical universe. The method I propose to use is a generalization of a recently published method of constructing smooth G2 manifolds of myself and Joyce, which involves glueing onto the shape a particular family of spaces that are solutions to Einstein's equations of relativity. Another objective of my research is to understand the set of all possible G2 manifolds (the moduli space), which is itself a shape of high dimension. Studying the ways a smoothly deforming G2 manifold can develop cone-like points involves considering curves on the moduli space that reach the boundary. I plan to investigate this question by analyzing the curvature of the moduli space itself. Establishing upper bounds on this curvature gives quantitative information about the formation of cone-like points and imposes restrictions on the associated physics.
我的研究是在理论物理学的启发下的高维几何学。自爱因斯坦1915年的工作以来,物理学家一直在寻找一种理论,在数学上将引力与量子力学统一起来。一个有希望的候选者是M理论,它使用以特殊方式弯曲的7维形状来描述宇宙。这种形状被称为G2流形。为了使物理理论与现实相一致,我们需要这些G2流形具有某些锥状点。这些被称为G2 conifolds。虽然我们知道成千上万的光滑G2流形(没有锥状点)的例子,但仍然没有证据证明真正的G2锥真的存在。从我和洛泰的物理论证和严格的数学工作来看,它们肯定会大量存在。长期目标是理解G2流形的性质和结构,就像我们理解卡-丘流形一样,卡-丘流形是具有类似性质的6维形状,这些性质更容易理解。这两个物体都是物理学中大统一理论的候选者。在数学上,G2流形是非常有趣的,因为尽管它们与卡-丘流形有许多共同的性质,但由于技术原因,G2流形不能使用与卡-丘流形相同的工具来研究,即经典代数几何。这是因为,G2流形不是像卡-丘流形那样由复数局部建模,而是由一个只能存在于7维中的特殊数字系统局部建模。由于经典工具不可用,我们必须使用分析方法来研究G2流形,例如非线性偏微分方程。正是由于这个原因,G2流形和G2锥的数学分析在技术上是如此困难。我的研究目标之一是构建G2 conifolds的第一个例子,为它们的存在提供严格的证明。这是一个需要解决的非常重要的问题,因为它将为M理论作为我们物理宇宙模型的可行性提供数学证明。我建议使用的方法是最近发表的一种方法的推广,这种方法是我和乔伊斯构造光滑的G2流形的方法,它涉及到将一个特殊的空间族粘在形状上,这些空间族是爱因斯坦相对论方程的解。我研究的另一个目标是理解所有可能的G2流形(模空间)的集合,它本身就是一个高维形状。研究光滑变形的G2流形可以发展锥状点的方式涉及到考虑到达边界的模空间上的曲线。我计划通过分析模空间本身的曲率来研究这个问题。建立这个曲率的上界给出了关于锥状点形成的定量信息,并对相关的物理学施加了限制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karigiannis, Spiro其他文献
Karigiannis, Spiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karigiannis, Spiro', 18)}}的其他基金
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
- 批准号:
RGPIN-2019-03933 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
- 批准号:
RGPIN-2019-03933 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
- 批准号:
RGPIN-2019-03933 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2016
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2015
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2014
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Differential geomtery of manifold with special holonomy and their calibrated submanifolds
特殊完整流形的微分几何及其标定子流形
- 批准号:
371990-2009 - 财政年份:2013
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Differential geomtery of manifold with special holonomy and their calibrated submanifolds
特殊完整流形的微分几何及其标定子流形
- 批准号:
371990-2009 - 财政年份:2012
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
利用全基因组关联分析和QTL-seq发掘花生白绢病抗性分子标记
- 批准号:31971981
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
- 批准号:31900571
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
利用多个实验群体解析猪保幼带形成及其自然消褪的遗传机制
- 批准号:31972542
- 批准年份:2019
- 资助金额:57.0 万元
- 项目类别:面上项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
多目标诉求下我国交通节能减排市场导向的政策组合选择研究
- 批准号:71473155
- 批准年份:2014
- 资助金额:60.0 万元
- 项目类别:面上项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于物质流分析的中国石油资源流动过程及碳效应研究
- 批准号:41101116
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
- 批准号:
RGPIN-2019-03933 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
- 批准号:
RGPIN-2019-03933 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
- 批准号:
RGPIN-2019-03933 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Investigating possible Palaeolithic domestication of dogs through geometric morphometric analysis of fossil remains with a special focus on dental material
通过对化石遗骸进行几何形态测量分析,特别关注牙科材料,研究旧石器时代对狗的可能驯化
- 批准号:
399477213 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Research Grants
Geometric analysis of Lagrangian mean curvature flows and Ricci flows
拉格朗日平均曲率流和里奇流的几何分析
- 批准号:
16H07229 - 财政年份:2016
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
ATD: Geometric and Statistical Data Analysis on Special Manifolds for Threat Detection
ATD:用于威胁检测的特殊流形的几何和统计数据分析
- 批准号:
1120875 - 财政年份:2011
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
Special meeting: Asymptotic geometric analysis
特别会议:渐近几何分析
- 批准号:
0963819 - 财政年份:2010
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
Geometric Analysis and special Lagrangian geometry
几何分析和特殊拉格朗日几何
- 批准号:
EP/G007241/1 - 财政年份:2009
- 资助金额:
$ 1.53万 - 项目类别:
Fellowship
Special Meeting: CRM Special Semester on Harmonic analysis, Geometric Measure Theory and Quasiconformal Mappings
特别会议:CRM调和分析、几何测度理论和拟共形映射特别学期
- 批准号:
0902259 - 财政年份:2009
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
Special Semester on Hyperbolic Manifolds and Geometric Analysis
双曲流形和几何分析特别学期
- 批准号:
0412837 - 财政年份:2004
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant