CAREER: Mathematics for Biological Engineering

职业:生物工程数学

基本信息

  • 批准号:
    0644792
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

CAREER: Mathematics for Biological EngineeringYiannis N. KaznessisUniversity of MinnesotaBES-0644792The research objective of this project is to develop the mathematics of biological engineering and to investigate and design inducible gene expression systems combining theory and experiments. The education objective is to train and attract a new generation of engineers and scientists to computational and experimental systems biology. Exposing high school teachers and students to computational bioengineering is a specific educational/outreach aim. Intellectual merit: The current rapid expansion of biological knowledge offers a great opportunity to rationally engineer biological systems that respond to signals. The large number of components and interactions involved in dynamic gene regulation warrants a quantitative systems biology perspective. The creation of mathematical theories and accurate models of all known molecular events involved in transcriptional/translational regulation can provide new descriptive and predictive insight into the dynamic behavior of gene networks. The proposed activities advance knowledge in computational systems and synthetic biology. They also result in novel gene regulatory networks, such as bio-logical AND gates. Broader impacts: The ambitious idea of engineering cells that will function as miniature factories has given rise to new fields of research, systems and synthetic biology. The objectives are the design and construction of new biological parts, devices and systems from natural biological systems. The computational bioengineering theories and algorithms proposed will positively impact rational biological engineering. Broad applications range from biofuel development, to detectors for biochemical and chemical weapons, to devices that will remove environmental pollutants, to disease diagnosis, to gene therapies, even to engineered microbes to produce hydrogen from sunlight and water. Computational and mathematical biology, implemented with an eye towards engineering applications, are exciting fields. Assisting high school teachers to employ the considerable computational biology resources at the University of Minnesota and teaching them how mathematics and biology can be combined productively in the computer is a priority detailed in this project. Expected outcomes are participants with the ability to instruct high school students in the fundamental concepts of computational biology, and eventually high school students interested in pursuing a science/engineering career.
职业:生物工程数学明尼苏达大学BES-0644792该项目的研究目标是发展生物工程数学,并结合理论和实验研究和设计可诱导的基因表达系统。教育目标是培养和吸引新一代工程师和科学家从事计算和实验系统生物学。让高中教师和学生接触计算生物工程是一个具体的教育/推广目标。智力优势:目前生物学知识的快速扩展为合理设计对信号做出反应的生物系统提供了一个很好的机会。动态基因调控中涉及的大量组件和相互作用证明了定量系统生物学的观点是正确的。对参与转录/翻译调控的所有已知分子事件的数学理论和准确模型的建立,可以为基因网络的动态行为提供新的描述性和预测性见解。拟议的活动增进了计算系统和合成生物学方面的知识。它们还导致了新的基因调控网络,如生物逻辑与门。更广泛的影响:将工程细胞用作微型工厂的雄心勃勃的想法已经催生了研究、系统和合成生物学的新领域。目标是从天然生物系统中设计和建造新的生物部件、装置和系统。提出的计算生物工程理论和算法将对理性生物工程产生积极影响。应用范围广泛,从生物燃料开发,到生化和化学武器的探测器,到去除环境污染物的设备,到疾病诊断,到基因疗法,甚至到利用阳光和水生产氢气的工程微生物。计算和数学生物学是令人兴奋的领域,其实施着眼于工程应用。帮助高中教师利用明尼苏达大学大量的计算生物学资源,并教他们如何在计算机中有效地结合数学和生物学是本项目详细说明的优先事项。预期结果是有能力向高中生传授计算生物学基本概念的参与者,最终是对追求科学/工程职业感兴趣的高中生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yiannis Kaznessis其他文献

Yiannis Kaznessis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yiannis Kaznessis', 18)}}的其他基金

SBIR Phase I: Antiviral and Anti-inflammatory Live Biotherapeutics (COVID-19)
SBIR 第一阶段:抗病毒和抗炎活生物治疗药物 (COVID-19)
  • 批准号:
    2031154
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Conference: 2012 Midwest Thermodynamics and Statistical Mechanics conference. University of Minnesota, May 20-22, 2012
会议:2012 年中西部热力学和统计力学会议。
  • 批准号:
    1162429
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NIH-NSF BBSI. THE UNIVERSITY OF MINNESOTA SUMMER BIOINFORMATICS INSTITUTE
NIH-NSF BBSI。
  • 批准号:
    0608910
  • 财政年份:
    2006
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
QSB: Multiscale Modeling of Gene Regulatory Modules
QSB:基因调控模块的多尺度建模
  • 批准号:
    0425882
  • 财政年份:
    2004
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
NIH-NSF BBSI: The University of Minnesota Summer Bioinformatics Institute
NIH-NSF BBSI:明尼苏达大学夏季生物信息学研究所
  • 批准号:
    0234112
  • 财政年份:
    2003
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

普林斯顿应用数学指南(The Princeton Companion to Applied Mathematics )的翻译与出版
  • 批准号:
    12226506
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
数学之源书(Source book in mathematics)的翻译与出版
  • 批准号:
    11826405
  • 批准年份:
    2018
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
怀尔德“Mathematics as a cultural system”翻译研究
  • 批准号:
    11726404
  • 批准年份:
    2017
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
Frontiers of Mathematics in China
  • 批准号:
    11024802
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
The Mathematics of Non-Local Biological Invasions
非局部生物入侵的数学
  • 批准号:
    535115-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: Exploring the Mathematics of Biological Ecosystems with Data Science
合作研究:用数据科学探索生物生态系统的数学
  • 批准号:
    2031468
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
The Mathematics of Non-Local Biological Invasions
非局部生物入侵的数学
  • 批准号:
    535115-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Exploring the Mathematics of Biological Ecosystems with Data Science
合作研究:用数据科学探索生物生态系统的数学
  • 批准号:
    2031459
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
The Mathematics of Non-Local Biological Invasions
非局部生物入侵的数学
  • 批准号:
    535115-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了