Applications of Dynamical Systems to Statistical Physics, Geometry, and Population Biology/Demography

动力系统在统计物理、几何和人口生物学/人口统计学中的应用

基本信息

  • 批准号:
    0649363
  • 负责人:
  • 金额:
    $ 0.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-01 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

ABSTRACTWeissThis proposal is to study several applications of dynamical systems tostatistical physics, geometry, and population biology/ecology. (i) The pressure and free energy are the two fundamental objects of study in the statistical physics of lattice spin systems. However, even for the simplest lattice spin systems, the information about the microscopic potential that the free energy captures is subtle and poorly understood. The PI has started a program to study whether, or to what extent, natural classes of Holder continuous potentials for certain one-dimensional lattice spin systems are determined by their free energy. We also plan to investigate striking similarities between the rigidity of free energy and fascinating rigidity problems in spectral geometry and number theory. (ii) Little is known about thedynamics of the geodesic flow on positively curved manifolds. The PIplans to continue studying the relations between positive curvature andcomplicated dynamics of the geodesic flow. (iii) The PI has started aprogram to systematically study the global dynamics and bifurcations fornonlinear Leslie models where the fertility rates and survivalprobabilities have various natural functional forms as functions of thepopulation size.(i) The pressure and free energy are the two fundamental objects of study in the statistical physics of lattice spin systems. Lattice spin systems provide an important and illuminating family of models in statistical physics, condensed matter physics, and chemistry. For instance, phase transitions correspond to non-differentiability for some derivative of free energy. However, even for the simplest lattice spin systems, the information about the microscopic potential that the free energy captures is subtle and poorly understood. The PI has started a program to study whether, or to what extent, potentials forone-dimensional lattice systems are determined by their free energy. Wehope this work will provide new insights into this important, yetmysterious, quantity. (ii) Essentially all demographic and animalpopulation models in current use are based on the linear Leslie model. Many population biologists, ecologists, and demographers are now lookingto nonlinear population models for more accurate population forecasting. The PI has started a program to systematically study the global dynamicsand bifurcations for nonlinear Leslie models where the fertility rates andsurvival probabilities have various natural functional forms as functionsof the population size. One of our ultimate goals is to create a``population modeling toolbox'' which could be used by a wide range ofpopulation modelers to more accurately predict animal populations.
Weiss本计划研究动力系统在统计物理学、几何学和种群生物学/生态学中的应用。 (i)压强和自由能是晶格自旋系统统计物理研究的两个基本对象。然而,即使对于最简单的晶格自旋系统,自由能所捕获的微观势能信息也是微妙的,而且人们对它的理解也很少。PI已经开始了一个项目,研究某些一维晶格自旋系统的保持器连续势的自然类是否或在多大程度上由它们的自由能决定。我们还计划研究自由能的刚性与谱几何和数论中迷人的刚性问题之间惊人的相似之处。(ii)关于正曲流形上测地线流的动力学知之甚少。 计划继续研究测地线流的正曲率与复杂动力学之间的关系。(iii)PI已经开始了一个计划,系统地研究非线性Leslie模型的全局动力学和分支,其中生育率和生存概率作为人口规模的函数具有各种自然函数形式。(i)压强和自由能是晶格自旋系统统计物理研究的两个基本对象。晶格自旋系统在统计物理学、凝聚态物理学和化学中提供了一个重要的和有启发性的模型家族。例如,相变对应于自由能的某些导数的不可微性。 然而,即使对于最简单的晶格自旋系统,自由能所捕获的微观势能信息也是微妙的,而且人们对它的理解也很少。PI已经启动了一个项目,研究一维晶格系统的势能是否或在多大程度上取决于它们的自由能。 我们希望这项工作将提供新的见解,这一重要的,但神秘的,数量。 (ii)目前使用的所有人口统计学和动物种群模型基本上都是基于线性Leslie模型。 许多人口生物学家、生态学家和人口学家现在都在寻找非线性人口模型来进行更精确的人口预测。 PI已经开始了一个计划,系统地研究非线性Leslie模型的全局动力学和分支,其中生育率和生存概率作为人口规模的函数具有各种自然函数形式。我们的最终目标之一是创建一个“种群建模工具箱”,它可以被广泛的种群建模者用来更准确地预测动物种群。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Howard Weiss其他文献

Some remarks on the dynamics of the Mixmaster universe
Endometrial Cyst of the Pancreas
  • DOI:
    10.1016/s0016-5085(84)80177-8
  • 发表时间:
    1984-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alberto M. Marchevsky;Maurice J. Zimmerman;Arthur H. Aufses;Howard Weiss
  • 通讯作者:
    Howard Weiss
Free Energy as a Dynamical Invariant (or Can You Hear the Shape of a Potential?)
Chondroectodermal dysplasia: Report of a case and review of the literature
  • DOI:
    10.1016/s0022-3476(55)80280-6
  • 发表时间:
    1955-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Howard Weiss
  • 通讯作者:
    Howard Weiss
How Smooth is Your Wavelet? Wavelet Regularity via Thermodynamic Formalism

Howard Weiss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Howard Weiss', 18)}}的其他基金

Applications of Dynamical Systems to Statistical Physics, Geometry, and Population Biology/Demography
动力系统在统计物理、几何和人口生物学/人口统计学中的应用
  • 批准号:
    0355180
  • 财政年份:
    2004
  • 资助金额:
    $ 0.03万
  • 项目类别:
    Standard Grant
Symbolic Dynamics, Smooth Dynamics, and Applications
符号动力学、平滑动力学及其应用
  • 批准号:
    0100252
  • 财政年份:
    2001
  • 资助金额:
    $ 0.03万
  • 项目类别:
    Standard Grant
Smooth Dynamics, Dimension Theory, Geodesic Flows, and Mathematical Biology
光滑动力学、维度理论、测地线流和数学生物学
  • 批准号:
    9704913
  • 财政年份:
    1997
  • 资助金额:
    $ 0.03万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Smooth Dynamical Systems and Dimension Theory
数学科学:光滑动力系统和维度理论
  • 批准号:
    9403724
  • 财政年份:
    1994
  • 资助金额:
    $ 0.03万
  • 项目类别:
    Continuing Grant
U.S.-Brazil Science & Technology Initiative: Geodesic Flow and Solution of the Wave Equation on Compact Riemannian Manifolds
美国-巴西科学
  • 批准号:
    9104217
  • 财政年份:
    1991
  • 资助金额:
    $ 0.03万
  • 项目类别:
    Standard Grant
Boston Harbor Marine Research Program for Teachers
波士顿港教师海洋研究计划
  • 批准号:
    9153768
  • 财政年份:
    1991
  • 资助金额:
    $ 0.03万
  • 项目类别:
    Standard Grant
Undersea Research Program for Teachers
教师海底研究计划
  • 批准号:
    8954568
  • 财政年份:
    1989
  • 资助金额:
    $ 0.03万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    8905720
  • 财政年份:
    1989
  • 资助金额:
    $ 0.03万
  • 项目类别:
    Fellowship Award
Undersea Research Program for Teachers
教师海底研究计划
  • 批准号:
    8850518
  • 财政年份:
    1988
  • 资助金额:
    $ 0.03万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
  • 批准号:
    2349508
  • 财政年份:
    2024
  • 资助金额:
    $ 0.03万
  • 项目类别:
    Standard Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
  • 批准号:
    2342407
  • 财政年份:
    2024
  • 资助金额:
    $ 0.03万
  • 项目类别:
    Standard Grant
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
  • 批准号:
    2340631
  • 财政年份:
    2024
  • 资助金额:
    $ 0.03万
  • 项目类别:
    Continuing Grant
Dynamical Systems with a View towards Applications
着眼于应用的动力系统
  • 批准号:
    2350184
  • 财政年份:
    2024
  • 资助金额:
    $ 0.03万
  • 项目类别:
    Continuing Grant
Analysis of discrete dynamical systems described by max-plus equations and their applications
最大加方程描述的离散动力系统分析及其应用
  • 批准号:
    23K03238
  • 财政年份:
    2023
  • 资助金额:
    $ 0.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-Stationary Random Dynamical Systems and Applications
非平稳随机动力系统和应用
  • 批准号:
    2247966
  • 财政年份:
    2023
  • 资助金额:
    $ 0.03万
  • 项目类别:
    Standard Grant
Conference: Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
  • 批准号:
    2243027
  • 财政年份:
    2023
  • 资助金额:
    $ 0.03万
  • 项目类别:
    Standard Grant
CAREER: Characterizing Attack Resilience of Multi-agent Dynamical Systems with Applications to Connected Autonomous Vehicles
职业:表征多智能体动态系统的攻击弹性及其在联网自动驾驶汽车中的应用
  • 批准号:
    2236537
  • 财政年份:
    2023
  • 资助金额:
    $ 0.03万
  • 项目类别:
    Continuing Grant
A numerical method to solve matrix-valued differential inequalities with applications in dynamical systems
求解矩阵值微分不等式的数值方法及其在动力系统中的应用
  • 批准号:
    2889464
  • 财政年份:
    2023
  • 资助金额:
    $ 0.03万
  • 项目类别:
    Studentship
Conference: Fall 2023 Mathematics Conference: Differential Equations and Dynamical Systems and Applications
会议:2023 年秋季数学会议:微分方程和动力系统及应用
  • 批准号:
    2317068
  • 财政年份:
    2023
  • 资助金额:
    $ 0.03万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了